950 resultados para Initial formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The U.S. Geological Survey is working to define a hydroclimatic data network. The Geological Survey collects stream discharge data at more than 7000 sites throughout the United States. Many of these stations are operated to supply information about specific activities such as flood control, irrigation projects, or hydropower generation. As a beginning, the Geological Survey will attempt to identify stations that represent natural streamflow. Several lists of stations representing "natural" streamflow have been complied in the past. While there is some overlap among these lists, a consistent compilation is preferred. The present effort is to produce one list identifying those stations having periods of record which would be suitable for mesoscale climatic analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is derived from the PhD research entitled "The initial training of Geography teacher in school cartography: a reflective analysis", developed by the program of Post-graduation in Geography of UNESP, campus of Rio Claro. The research is in the final phase, focused on data analysis and final writing of thesis. In this context, it may be stated that the research orientates in the problematic focused at the understanding of how the recent knowledge produced by the school cartography unfolds in the practices of Geography licentiate students. However, at this time, we will discuss about issues related to the research by the theoretical and practical point of view.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aerosol particles play an important role in the Earth s atmosphere and in the climate system: they scatter and absorb solar radiation, facilitate chemical processes, and serve as seeds for cloud formation. Secondary new particle formation (NPF) is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapors participating in this process are, however, not truly understood. In order to fully explain atmospheric NPF and subsequent growth, we need to measure directly the very initial steps of the formation processes. This thesis investigates the possibility to study atmospheric particle formation using a recently developed Neutral cluster and Air Ion Spectrometer (NAIS). First, the NAIS was calibrated and intercompared, and found to be in good agreement with the reference instruments both in the laboratory and in the field. It was concluded that NAIS can be reliably used to measure small atmospheric ions and particles directly at the sizes where NPF begins. Second, several NAIS systems were deployed simultaneously at 12 European measurement sites to quantify the spatial and temporal distribution of particle formation events. The sites represented a variety of geographical and atmospheric conditions. The NPF events were detected using NAIS systems at all of the sites during the year-long measurement period. Various particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we also estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation. At most sites, the particle growth rate increased with the increasing particle size indicating that different condensing vapors are participating in the growth of different-sized particles. The results suggest that, in addition to sulfuric acid, organic vapors contribute to the initial steps of NPF and to the subsequent growth, not just later steps of the particle growth. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. The results infer that the ion-induced nucleation has a minor contribution to particle formation in the boundary layer in most of the environments. These results give tools to better quantify the aerosol source provided by secondary NPF in various environments. The particle formation characteristics determined in this thesis can be used in global models to assess NPF s climatic effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interfacial formation processes and reactions between Au and hydrogenated amorphous Si have been studied by photoemission spectroscopy and Auger electron spectroscopy. A three-dimensional growth of Au metal cluster occurs at initial formation of the Au/a-Si:H interface. When Au deposition exceeds a critical time, Au and Si begin interdiffusing and react to create an Au-Si alloy region. Annealing enhances interdiffusion and a Si-rich region exists on the topmost surface of Au films on a-Si:H.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a solvothermal route to the synthesis of SrF2 hierarchical flowerlike structures based on thermal decomposition of single source precursor (SSP) of strontium trifluoroacetate in benzylamine solvent. These flowerlike superstructures are actually composed of numerous aggregated nanoplates, and the growth process involves the initial formation of spherical nanoparticles and subsequent transformation into nanoplates. which aggregated together to form microdisks and finally flowerlike superstructures. The results demonstrate the important role of benzylamine in the formation of well-defined SrF2 superstructures, not only providing size and shape control to form nanoplates but also contributing to the self-assembly behavior of nanoplates to build into flower-like superstructures. Additionally, the photoluminescence properties of the obtained SrF2 superstructures are studied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell migration requires the initial formation of cell protrusions, lamellipodia and/or filopodia, the attachment of the leading lamella to extracellular cues and the formation and efficient recycling of focal contacts at the leading edge. The small calcium binding EF-hand protein S100A4 has been shown to promote cell motility but the direct molecular mechanisms responsible remain to be elucidated. In this work, we provide new evidences indicating that elevated levels of S100A4 affect the stability of filopodia and prevent the maturation of focal complexes. Increasing the levels of S100A4 in a rat mammary benign tumor derived cell line results in acquired cellular migration on the wound healing scratch assay. At the cellular levels, we found that high levels of S100A4 induce the formation of many nascent filopodia, but that only a very small and limited number of those can stably adhere and mature, as opposed to control cells, which generate fewer protrusions but are able to maintain these into more mature projections. This observation was paralleled by the fact that S100A4 overexpressing cells were unable to establish stable focal adhesions. Using different truncated forms of the S100A4 proteins that are unable to bind to myosin IIA, our data suggests that this newly identified functions of S100A4 is myosin-dependent, providing new understanding on the regulatory functions of S100A4 on cellular migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alliances, with other inter-organisational forms, have become a strategy of choice and necessity for both the private and public sectors. From initial formation, alliances develop and change in different ways, with research suggesting that many alliances will be terminated without their potential value being realised. Alliance process theorists address this phenomenon, seeking explanations as to why alliances unfold the way they do. However, these explanations have generally focussed on economic and structural determinants: empirically, little is known about how and why the agency of alliance actors shapes the alliance path. Theorists have suggested that current alliance process theory has provided valuable, but partial accounts of alliance development, which could be usefully extended by considering social and individual factors. The purpose of this research therefore was to extend alliance process theory by exploring individual agency as an explanation of alliance events and in doing so, reveal the potential of a multi-frame approach for understanding alliance process. Through an historical study of a single, rich case of alliance process, this thesis provided three explanations for the sequence of alliance events, each informed by a different theoretical perspective. The explanatory contribution of the Individual Agency (IA) perspective was distilled through juxtaposition with the perspectives of Environmental Determinism (ED) and Indeterminacy/Chance (I/C). The research produced a number of findings. First, it provided empirical support for the tentative proposition that the choices and practices of alliance actors are partially explanatory of alliance change and that these practices are particular to the alliance context. Secondly, the study found that examining the case through three theoretical frames provided a more complete explanation. Two propositions were put forward as to how individual agency can be theorised within this three-perspective framework. Finally, the case explained which alliance actors were required to shape alliance decision making in this case and why.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomimetic systems employed for biotechnological applications i.e. as biosensors or bio fuel cells, require initial formation of conducting support/protein complexes with controlled properties. The specific interaction of the protein with the support determines important qualities of the device such as electrical communication, long-term stability and catalytic efficiency. In this respect the system parameters have to be chosen in a way that high protein loading on the support is achieved while protein denaturation upon adsorption is prevented. The conditions on the surface have to be adjusted in such a way that the desired surface reaction of the protein i.e. electron transfer to either the electrode or a second redox partner, is still guaranteed. Hence the choice of support, its functionlisation as well as the right adjustment of solution parameters play a crucial role in the rational design of these support/protein constructs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct precipitation of fine powders of lead zirconate titanate (PZT) in the complete range of solid solution, is investigated under hydrothermal conditions, starting from lead oxide and titania/zirconia mixed gels. The perovskite phase is formed in the temperature range of 165 – 340°C. Sequence of the hydrothermal reactions is studied by identifying the intermediate phases. The initial formation of PbO: TiO2 solid solution is followed by the reaction of the same with the remaining mixed gels giving rise to X-ray amorphous PZT phase. Further, through crystallite growth, the X-ray crystalline PZT is formed. This method can be extended for the preparation of PLZT powder as well. The resulting powders are sinterable to high density ceramics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of similar to 200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthesis of size selective monodispersed nanoparticles particularly intermetallic with well-defined compositions represents a challenge. This paper presents a way for the synthesis of intermetallic AuCu nanoparticles as a model system. We show that reduction of Au and Cu precursors is sensitive to the ratio of total molar concentrations of surfactant to metal precursors. A careful design of experiments to understand the kinetics of the reduction process reveals initial formation of seed nanoparticles of pure Au. Reduction of Cu occurs on the surface of the seed followed by diffusion to yield AuCu. This understanding allows us to develop a two step synthesis where the precise size controlled seed of Au nanoparticles produced in the first step is used in the second step reaction mixture as an Au precursor to allow deposition and interdiffusion of Cu that yields size selected AuCu intermetallics of sub 10 nm sizes.