968 resultados para Information Fusion
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.
Resumo:
This thesis develops the hardware and software framework for an integrated navigation system. Dynamic data fusion algorithms are used to develop a system with a high level of resistance to the typical problems that affect standard navigation systems.
Resumo:
本文介绍了一种用于载人潜水器的导航传感器的数据采集及信息融合技术。航行控制计算机通过基于工业以太网的数据通信系统对各传感器进行数据采集,采用卡尔曼滤波器完成对各传感器数据信息的融合,以便提高数据的精度和控制系统的性能,并将结果送给监控计算机,用于载人潜水器的姿态显示。
Resumo:
Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.
Resumo:
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.
Resumo:
When multiple sources provide information about the same unknown quantity, their fusion into a synthetic interpretable message is often a tedious problem, especially when sources are conicting. In this paper, we propose to use possibility theory and the notion of maximal coherent subsets, often used in logic-based representations, to build a fuzzy belief structure that will be instrumental both for extracting useful information about various features of the information conveyed by the sources and for compressing this information into a unique possibility distribution. Extensions and properties of the basic fusion rule are also studied.
Resumo:
Correctly modelling and reasoning with uncertain information from heterogeneous sources in large-scale systems is critical when the reliability is unknown and we still want to derive adequate conclusions. To this end, context-dependent merging strategies have been proposed in the literature. In this paper we investigate how one such context-dependent merging strategy (originally defined for possibility theory), called largely partially maximal consistent subsets (LPMCS), can be adapted to Dempster-Shafer (DS) theory. We identify those measures for the degree of uncertainty and internal conflict that are available in DS theory and show how they can be used for guiding LPMCS merging. A simplified real-world power distribution scenario illustrates our framework. We also briefly discuss how our approach can be incorporated into a multi-agent programming language, thus leading to better plan selection and decision making.
Resumo:
Depending on the representation setting, different combination rules have been proposed for fusing information from distinct sources. Moreover in each setting, different sets of axioms that combination rules should satisfy have been advocated, thus justifying the existence of alternative rules (usually motivated by situations where the behavior of other rules was found unsatisfactory). These sets of axioms are usually purely considered in their own settings, without in-depth analysis of common properties essential for all the settings. This paper introduces core properties that, once properly instantiated, are meaningful in different representation settings ranging from logic to imprecise probabilities. The following representation settings are especially considered: classical set representation, possibility theory, and evidence theory, the latter encompassing the two other ones as special cases. This unified discussion of combination rules across different settings is expected to provide a fresh look on some old but basic issues in information fusion.