935 resultados para Inbred Strains
Resumo:
Foi investigada a susceptibilidade de sete linhagens isogênicas de camundongos à infecção experimental, primária e secundária, por Strongyloides venezuelensis a fim de servir de base para estudos genéticos sobre a resistência. Foram utilizados 12 camundongos machos, com seis semanas de idade, das seguintes linhagens isogênicas: A/J, BALB/c, CBA/J, C3H/Hepos, C57BL/6, DBA/2 e NIH. Os animais foram inoculados, via sub-cutânea, com 2000 larvas infectantes. As contagens médias (± desvio padrão) de parasitas no intestino delgado dos camundongos seis dias após a infecção, em ordem crescente, foram: 28 (± 19) na linhagem NIH; 647 (± 228) na BALB/c; 709 (± 425) na DBA/2; 731 (± 151) na C3H/Hepos, 801 (± 174) na CBA/J; 1024 (± 267) na C57BL/6 e 1313 (± 483) na A/J. Os camundongos C57BL/6 apresentaram as mais elevadas contagens de ovos de S. venezuelensis por grama de fezes (OPG) e os NIH, as mais baixas. Não foram detectados ovos nos exames de fezes e não foram encontrados parasitas no intestino delgado dos animais re-infectados 14 dias após a infecção primária. A linhagem NIH apresentou elevada resistência contra as infecções primárias por S. venezuelensis. Entre as outras seis linhagens, uma das mais susceptíveis foi a linhagem C57BL/6.
Resumo:
BACKGROUND: Noninvasive intraocular pressure (IOP) measurement in mice is critically important for understanding the pathophysiology of glaucoma. Rebound tonometry is one of the methods that can be used for obtaining such measurements. We evaluated the ability of the rebound tonometer (RT) to determine IOP differences among various mouse strains and whether differences in corneal thickness may affect IOP measurements in these animals. MATERIALS AND METHODS: Five different commonly used mouse strains (BALB/C, CBA/CAHN, AKR/J, CBA/J, and 129P3/J) were used. IOP was measured in eyes from 12 nonsedated animals (6 male and 6 female) from each strain at 2 to 3 months of age using the RT. IOPs were measured in all animals, on 2 different days between 10 AM and 12 PM. Subsequently, a number of eyes from each strain were cannulated to provide a calibration curve specific for that strain. Tonometer readings for all strains were converted to apparent IOP values using the calibration data obtained from the calibration curve of the respective strain. For comparison purposes, IOP values were also obtained using the C57BL/6 calibration data previously reported. IOP for the 5 strains, male and female animals, and the different occasion of measurement were compared using repeat measures analysis of variance. The central corneal thickness (CCT) of another group of 8 male animals from each of the 5 strains was also measured using an optical low coherence reflectometry (OLCR) pachymeter modified for use with mice. CCT values were correlated to mean IOPs of male animals and to the slopes and intercept of individual strain calibration curves. RESULTS: Noninvasive IOP measurements confirm that the BALB/C strain has lower and the CBA/CAHN has higher relative IOPs than other mouse strains while the AKR/J, the CBA/J, and the 129P3/J strains have intermediate IOPs. There is a very good correlation of apparent IOP values obtained by RT with previously reported true IOPs obtained by cannulation. There was a small but statistically significant difference in IOP between male and female animals in 2 strains (129P3/J and AKR/J) with female mice having higher relative IOPs. No correlation between CCT and IOP was detected. CCT did not correlate with any of the constants describing the calibration curves in the various strains. CONCLUSIONS: Noninvasive IOP measurement in mice using the RT can be used to help elucidate IOP phenotype, after prior calibration of the tonometer. CCT has no effect on mouse IOP measurements using the RT.
Resumo:
The prevalence of cholesterol gallstones differs among inbred strains of mice fed a diet containing 15% (wt/wt) dairy fat, 1% (wt/wt) cholesterol, and 0.5% (wt/wt) cholic acid. Strains C57L, SWR, and A were notable for a high prevalence of cholelithiasis; strains C57BL/6, C3H, and SJL had an intermediate prevalence; and strains SM, AKR, and DBA/2 exhibited no cholelithiasis after consuming the diet for 18 weeks. Genetic analysis of the difference in gallstone prevalence rates between strains AKR and C57L was carried out by using the AKXL recombinant inbred strain set and (AKR x C57L)F1 x AKR backcross mice. Susceptibility to gallstone formation was found to be a dominant trait determined by at least two genes. A major gene, named Lith1, mapped to mouse chromosome 2. When examined after 6 weeks on the lithogenic diet, the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.88) was downregulated as expected in the gallstone-resistant strains, AKR and SJL, but this enzyme failed to downregulate in C57L and SWR, the gallstone-susceptible strains. This suggests that regulation of the rate-limiting enzyme in cholesterol biosynthesis may be pivotal in determining the occurrence and severity of cholesterol hypersecretion and hence lithogenicity of gallbladder bile. These studies indicate that genetic factors are critical in determining gallstone formation and that the genetic resources of the mouse model may permit these factors to be identified.
Resumo:
We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.
Resumo:
ight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed.
Resumo:
Gobiocypris rarus, a small, native cyprinid fish, is currently widely used in research on fish pathology, genetics, toxicology, embryology, and physiology in China. To develop this species as a model laboratory animal, inbred strains have been successfully created. In this study, to explore a method to discriminate inbred strains and evaluate inbreeding effects, morphological variation among three wild populations and three inbred stocks of G. rarus was investigated by the multivariate analysis of eight meristic and 30 morphometric characters. Tiny intraspecific variations in meristic characters were found, but these were not effective for population distinction. Stepwise discriminant analysis and cluster analysis of conventional measures and truss network data showed considerabe divergence among populations, especially between wild populations and inbred stocks. The average discriminant accuracy for all populations was 82.1% based on conventional measures and 86.4% based on truss data, whereas the discriminant accuracy for inbred strains was much higher. These results suggested that multivariate analyses of morphometric characters are an effective method for discriminating inbred strains of G. rarus. Morphological differences between wild populations and inbred strains appear to result from both genetic differences and environmental factors. Thirteen characters, extracted from stepwise discriminant analysis, played important roles in morphological differentiation. These characters were mainly measures related to body depth and head size.
Resumo:
Like humans, mice exhibit polymorphism in the N-acetylation of aromatic amines, many of which are toxic and/or carcinogenic. Mice have three N-acetyltransferase (Nat) genes, Nat1, Nat2 and Nat3, and Nat2 is known to be polymorphic. There is a dramatic difference in the acetylation of NAT2 substrates by blood from fast (C57BL/6J) compared with slow acetylator (A/J) mice. However, the acetylation of these substrates by liver cytosols from the two strains is very similar. In order to determine whether the expression of the NAT2 protein corresponded with the activities measured, a polyclonal antipeptide antisera was raised against the C-terminal decapeptide of NAT2 and characterized using recombinant murine NAT2 antigen. Enzyme-linked immunosorbent assays (ELISAs) demonstrated that the anti-NAT2 antiserum bound in a concentration-dependent fashion to recombinant NAT2. Immunochemical analysis of mouse liver cytosols from C57BL/6J or A/J livers indicated that the level of NAT2 protein expressed in the two strains was similar. Immunohistochemical staining of C57BL/6J liver with anti-NAT2 antiserum showed that NAT2 was expressed in hepatocytes throughout the liver although the intensity of staining in the perivenous (centrilobular) region was higher than that in the periportal region. NAT2 was also detected in epithelial cells in the lung, kidney, bladder, small intestine and skin as well as in erythrocytes and lymphocytes in the spleen and hair follicles and sebaceous glands in the skin. Characterization of the distribution of NAT2 will be of value in elucidating the role of polymorphic N-acetylation in protecting the organism from environmental insults as well as in endogenous metabolism.
Resumo:
Uniform DNA distribution in tumors is a prerequisite step for high transfection efficiency in solid tumors. To improve the transfection efficiency of electrically assisted gene delivery to solid tumors in vivo, we explored how tumor histological properties affected transfection efficiency. In four different tumor types (B16F1, EAT, SA-1 and LPB), proteoglycan and collagen content was morphometrically analyzed, and cell size and cell density were determined in paraffin-embedded tumor sections under a transmission microscope. To demonstrate the influence of the histological properties of solid tumors on electrically assisted gene delivery, the correlation between histological properties and transfection efficiency with regard to the time interval between DNA injection and electroporation was determined. Our data demonstrate that soft tumors with larger spherical cells, low proteoglycan and collagen content, and low cell density are more effectively transfected (B16F1 and EAT) than rigid tumors with high proteoglycan and collagen content, small spindle-shaped cells and high cell density (LPB and SA-1). Furthermore, an optimal time interval for increased transfection exists only in soft tumors, this being in the range of 5-15 min. Therefore, knowledge about the histology of tumors is important in planning electrogene therapy with respect to the time interval between DNA injection and electroporation.
Resumo:
Dichloromethane (DCM) is thought to be metabolized in vivo by two independent pathways: a glutathione (GSH) dependent pathway that yields CO2 and a cytochrome P-450 mediated one that yields both CO and CO2 (Gargas et al 1986). With a physiologically based pharmacokinetic (PB-PK) model, Andersen et al (1987) calculate the quantitative parameters for both metabolic pathways. Using the kinetic parameters thus obtained and the results of two carcinogenicity studies with rodents (Serota et al 1986; NTP 1985), the authors then estimate the tumour risk for humans.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.
Resumo:
Morphine induces antinociception by activating mu opioid receptors (muORs) in spinal and supraspinal regions of the CNS. (Beta)arrestin-2 (beta)arr2), a G-protein-coupled receptor-regulating protein, regulates the muOR in vivo. We have shown previously that mice lacking (beta)arr2 experience enhanced morphine-induced analgesia and do not become tolerant to morphine as determined in the hot-plate test, a paradigm that primarily assesses supraspinal pain responsiveness. To determine the general applicability of the (beta)arr2-muOR interaction in other neuronal systems, we have, in the present study, tested (beta)arr2 knock-out ((beta)arr2-KO) mice using the warm water tail-immersion paradigm, which primarily assesses spinal reflexes to painful thermal stimuli. In this test, the (beta)arr2-KO mice have greater basal nociceptive thresholds and markedly enhanced sensitivity to morphine. Interestingly, however, after a delayed onset, they do ultimately develop morphine tolerance, although to a lesser degree than the wild-type (WT) controls. In the (beta)arr2-KO but not WT mice, morphine tolerance can be completely reversed with a low dose of the classical protein kinase C (PKC) inhibitor chelerythrine. These findings provide in vivo evidence that the muOR is differentially regulated in diverse regions of the CNS. Furthermore, although (beta)arr2 appears to be the most prominent and proximal determinant of muOR desensitization and morphine tolerance, in the absence of this mechanism, the contributions of a PKC-dependent regulatory system become readily apparent.
Resumo:
In this paper, we have considered the problem of selection of available repertoires. With Ab2 as immunogens, we have used the idiotypic cascade to explore potential repertoires. Our results suggest that potential idiotypic repertoires are more or less the same within a species or between different species. A given idiotype "à la Oudin" can become a recurrent one within the same outbred species or within different species. Similarly, an intrastrain crossreactive idiotype can be induced in other strains, even though there is a genetic disparity between these strains. The structural basis of this phenomenon has been explored. We next examined results showing the loss and gain of recurrent idiotypes without any intentional idiotypic manipulation. A recurrent idiotype can be lost in a syngeneic transfer and a private one can become recurrent by changing the genetic background. The change of available idiotypic repertoires at the B cell level has profound influences on the idiotypic repertoires of suppressor T cells. All these results imply that idiotypic games are played by the immune system itself, a strong suggestion that the immune system is a functional idiotypic network.
Resumo:
Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.