989 resultados para ION BOMBARDMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented in the first part of this thesis is work performed on the ionizing energy beam induced adhesion enhancement of thin (~ 500 Angstrom) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16O, 19F, and 35Cl), with energies between 1 and 20 MeV. Using the "Scratch" test for adhesion measurement, and ESCA for chemical analysis of the film-substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed which explains the experimental data on the the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The ESCA data indicate that the chemical bonds (or compounds), which are responsible for the increase in the thin film adherence, are hydroxides rather than oxides.

In the second part of the thesis we present a research performed on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions). Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion. The x-ray rocking curve technique with a dynamical diffraction theory analysis provides the depth distribution of the strain and damage in the MeV ion bombarded crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 degrees C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the complexity of the general plasma techniques, pure single CH3+ ion beams were selected for the deposition of hydrogenated amorphous (a) carbon films with various ion energies and temperatures. Photoluminescence (PL) measurements have been performed on the films and violet/blue emission has been observed. The violet/blue emission is attributed to the small size distribution of sp(2) clusters and is related to the intrinsic properties of CH3 terminals, which lead to a very high barrier for the photoexcited electrons. Ion bombardment plays an important role in the PL behavior. This would provide further insight into the growth dynamics of a-C:H films. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is believed that during the initial stage of diamond film growth by chemical-vapor deposition (CVD), ion bombardment is the main mechanism in the bias-enhanced-nucleation (BEN) process. To verify such a statement, experiments by using mass-separated ion-beam deposition were carried out, in which a pure carbon ion beam, with precisely defined low energy, was selected for investigating the ion-bombardment effect on a Si substrate. The results are similar to those of the BEN process, which supports the ion-bombardment-enhanced-nucleation mechanism. The formation of sp(3) bonding is based on the presumption that the time of stress generation is much shorter than the duration of the relaxation process. The ion-bombarded Si is expected to enhance the CVD diamond nucleation density because the film contains amorphous carbon embedded with nanocrystalline diamond and defective graphite. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By mass-selected low energy ion beam deposition, amorphous carbon film was obtained. X-ray diffraction, Raman and Auger electron spectroscopy depth line shape measurements showed that such carbon films contained diamond particles. The main growth mechanism is subsurface implantation. Furthermore, it was indicated in a different way that ion bombardment played a decisive role in bias enhanced nucleation of chemical vapor deposition diamond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sputtered particle yields produced by Pbq+ (q=4-36) with constant kinetic energy bombardment on An surface were measured. The sputtering Could be separated to two parts: no potential sputtering is observed when q<24 (E-pot = 9.6 keV) and the sputtering yield increases with E-pot(1.2) for the higher charge states of q >= 24. The potential sputtering is mainly contributed by the relaxation of electronic excitations on target surface produced by the potential energy transfer from projectile to target atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 angstrom/min to 19 angstrom/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN.H films mechanically more resistant and altered their hydrophobic character.