1000 resultados para INTERNAL PHOTOEMISSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmonic enhanced Schottky detectors operating on the basis of the internal photoemission process are becoming an attractive choice for detecting photons with sub bandgap energy. Yet, the quantum efficiency of these detectors appears to be low compare to the more conventional detectors which are based on interband transitions in a semiconductor. Hereby we provide a theoretical model to predict the quantum efficiency of guided mode internal photoemission photodetector with focus on the platform of silicon plasmonics. The model is supported by numerical simulations and comparison to experimental results. Finally, we discuss approaches for further enhancement of the quantum efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 OSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2012 OSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip. © 2011 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2011 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overall quantum efficiency in surface plasmon (SP) enhanced Schottky barrier photodetectors is examined by considering both the external and internal yield. The external yield is considered through calculations of absorption and transmission of light in a configuration that allows reflectance minimization due to SP excitation. Following a Monte Carlo method, a procedure is presented to estimate the internal yield while taking into account the effect of elastic and inelastic scattering processes on excited carriers subsequent to photon absorption. The relative importance of internal photoemission and band-to-band contributions to the internal yield is highlighted along with the variation of the yield as a function of wavelength, metal thickness and other salient parameters of the detector. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light of wavelength 632.8 nm and p-polarization is incident on a prism-air gap (varied from 0.7 to 7 mum)-Al-GaAs arrangement. Both the photosignal generated by the Schottky diode and the reflectance are measured as a function of the internal angle of incidence in the prism. There is significant, well-defined enhancement of the photosignal, up to a factor of approximately 7.5, associated with two different types of enhanced absorption modes. For air gaps <1.5 mum there is photosignal enhancement due to an enhanced absorption feature (reflectance dip) that occurs at an angle of incidence just above critical angle in the prism; this feature corresponds to the excitation of a surface plasmon polariton at the Al-air interface. For air gaps > 1 mum there are between one and ten photoresponse peaks at input angles less than the critical angle. The corresponding enhanced absorption features are due to leaky guided wave modes set up in the air gap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface plasmon polariton mediated photoresponse from Al-GaAs diodes is examined in a prism-air gap-diode configuration as a function of both the wavelength of the incident light and thickness of the Al electrode. The experimental data shows a pronounced dip in reflectance as a function of internal angle of incidence in the prism, due to the excitation of the surface plasmon polariton at the Al-air interface, and a corresponding peak in device photosignal. Careful modelling of reflectance and quantum efficiency data shows that the bulk of the signal is generated by light which is re-radiated from this surface mode into the semiconductor substrate where it is absorbed by the creation of electron-hole pairs in the depletion region. This holds for all the wavelengths used here (all are shorter than the GaAs absorption edge) and across the thickness range of the Al electrodes (20-50 nm). Quantum efficiencies in the range 0.5-22% and enhancement factors of typically 7.5 were recorded in this investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the Otto (prism-air gap-sample) configuration p-polarized light of wavelength 632.8 nm has been coupled with greater than 80% efficiency to surface plasmons on the aluminium electrode of silicon-silicon dioxide-aluminium structures. The results show that if the average power per unit area dissipated on the metal film exceeds approximately 1 mW mm-2, then the coupling gap and thus the characteristics of the surface plasmon resonance are noticeably altered. In modelling the optical response of such systems the inclusion of both a non-uniform air coupling gap and a thin cermet layer at the aluminium surface may be necessary.