997 resultados para INDUCED-DRAIN-LEAKAGE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studies the gate-induced drain leakage (GIDL) in p- and n-MuGFET structures with different TiN metal gate thickness and high-k gate dielectrics. As a result of this analysis, it was observed that a thinner TiN metal gate showed a larger GIDL due to the different gate oxide thickness and a reduced metal gate work function. In addition, replacing SiON by a high-k dielectric (HfSiON) results for nMuGFETs in a decrease of the GIDL On the other hand, the impact of the gate dielectric on the GIDL for p-channel MuGFETs is marginal. The effect of the channel width was also studied, whereby narrow fin devices exhibit a reduced GIDL current in spite of the larger vertical electric field expected for these devices. Finally, comparing the effect of the channel type, an enhanced GIDL current for pMuGFET devices was observed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anticardiolipin antibodies from sera of patients with systemic lupus erythematosus or syphilis induced leakage of entrapped carboxyfluorescein (CF) from cardiolipin (CL)/phosphatidylcholine(PC) vesicles prepared by sonication of equimolar mixtures of CL:PC. The sera dilution used here was 1:7500. IgG (5-20 mu g/ml) from the same sera, not containing beta(2)GPI, also produced a concentration-dependent leak. Vesicle leakage was inhibited by salt and was not detected with vesicles prepared exclusively with phosphatidylcholine. The demonstration of antibody-induced vesicle leakage offers a convenient system to investigate the mechanism of antibody-lipid binding as well as a potential diagnostic tool.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The floating-body-RAM sense margin and retention-time dependence on the gate length is investigated in UTBOX devices using BJT programming combined with a positive back bias (so-called V th feedback). It is shown that the sense margin and the retention time can be kept constant versus the gate length by using a positive back bias. Nevertheless, below a critical L, there is no room for optimization, and the memory performances suddenly drop. The mechanism behind this degradation is attributed to GIDL current amplification by the lateral bipolar transistor with a narrow base. The gate length can be further scaled using underlap junctions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents direct growth of horizontally aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). The catalytic metals were prepared, consisting of iron (Fe), aluminum (Al) and platinum (Pt) triple layers, on the thermal silicon oxide substrate (Pt/Al/Fe/SiO2). Scanning electron microscopy measurements of CNT-FETs from the as-grown samples showed that over 80% of the nanotubes are grown across the catalytic electrodes. Moreover, the number of CNTs across the catalytic electrodes is roughly controllable by adjusting the growth condition. The Al, as the upper layer on Fe electrode, not only plays a role as a barrier to prevent vertical growth but also serves as a porous medium that helps in forming smaller nano-sized Fe particles which would be necessary for lateral growth of CNTs. Back-gate field effect transistors were demonstrated with the laterally aligned CNTs. The on/off ratios in all the measured devices are lower than 100 due to the drain leakage current. ©2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Separation by implantation of oxygen and nitrogen (SIMON) silicon-on-insulator (SOI) materials were fabricated by sequential oxygen and nitrogen implantation with annealing after each implantation. Analyses of SIMS, XTEM and HRTEM were performed. The results show that superior buried insulating multi-layers were well formed and the possible mechanism is discussed. The remarkable total-dose irradiation tolerance of SIMON materials was confirmed by few shifts of drain leakage current-gate source voltage (I-V) curves of PMOS transistors fabricated on SIMON materials before and after irradiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comparison of dc characteristics of fully depleted double-gate (DG) MOSFETs with respect to low-power circuit applications and device scaling has been performed by two-dimensional device simulation. Three different DG MOSFET structures including a conventional N+ polysilicon gate device with highly doped Si layer, an asymmetrical P+/N+ polysilicon gate device with low doped Si layer and a midgap metal gate device with low doped Si layer have been analysed. It was found that DG MOSFET with mid-gap metal, gates yields the best dc parameters for given off-state drain leakage current and highest immunity to the variation of technology parameters (gate length, gate oxide thickness and Si layer thickness). It is also found that an asymmetrical P+/N+ polysilicon gate DG MOSFET design offers comparable dc characteristics, but better parameter immunity to technology tolerances than a conventional DG MOSFET. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Fluidic leakage" caused by vacuum force at the reversible sealing poly(dimethylsiloxane) (PDMS) interfaces was converted to one useable avenue, which led to formation of highly ordered surfactant microdroplets functionalized with ionic liquids (ILs). Vacuum force is the prerequisite to lead constant microsolutions to diffuse to the PDMS interfaces. Imidazolium ions of ILs rendered structural rearrangement of the surfactant aggregates and the ordered droplets formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Objective. Low level laser therapy (LLLT) is a known anti-inflammatory therapy. Herein we studied the effect of LLLT on lung permeability and the IL-1 beta level in LPS-induced pulmonary inflammation. Study Design/Methodology. Rats were divided into 12 groups (n = 7 for each group). Lung permeability was measured by quantifying extravasated albumin concentration in lung homogenate, inflammatory cells influx was determined by myeloperoxidase activity, IL-1P in BAL was determined by ELISA and IL-1P mRNA expression in trachea was evaluated by RT-PCR. The rats were irradiated on the skin over the upper bronchus at the site of tracheotomy after LPS. Results. LLLT attenuated lung permeability. In addition, there was reduced neutrophil influx, myeloperoxidase activity and both IL-1 beta in BAL and IL-1 beta mRNA expression in trachea obtained from animals subjected to LPS-induced inflammation. Conclusion. LLLT reduced the lung permeability by a mechanism in which the IL-1 beta seems to have an important role.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article compares the efficiency of induced polarization (IP) and resistivity in characterizing a contamination plume due to landfill leakage in a typical tropical environment. The resistivity survey revealed denser electrical current flow that induced lower resistivity values due to the high ionic content. The increased ionic concentration diminished the distance of the ionic charges close to the membrane, causing a decrease in the IP phenomena. In addition, the self-potential (SP) method was used to characterize the preferential flow direction of the area. The SP method proved to be effective at determining the flow direction; it is also fast and economical. In this study, the resistivity results were better correlated with the presence of contamination (lower resistivity) than the IP (lower chargeability) data.