993 resultados para II-ALPHA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the α subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA topoisomerase II is a nuclear enzyme essential for chromosome dynamics and DNA metabolism. In mammalian cells, two genetically and biochemically distinct topoisomerase II forms exist, which are designated topoisomerase II alpha and topoisomerase II beta. In our studies of human topoisomerase II, we have found that a substantial fraction of the enzyme exists as alpha/beta heterodimers in HeLa cells. The ability to form heterodimers was verified when human topoisomerases II alpha and II beta were coexpressed in yeast and investigated in a dimerization assay. Analysis of purified heterodimers shows that these enzymes maintain topoisomerase II specific catalytic activities. The natural existence of an active heterodimeric subclass of topoisomerase II merits attention whenever topoisomerases II alpha and II beta function, localization, and cell cycle regulation are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMK) phosphorylates proteins pivotally involved in diverse neuronal processes and thereby coordinates cellular responses to external stimuli that regulate intracellular Ca2+ [Hanson, P. I. & Schulman, H. (1992) Annu. Rev. Biochem. 61, 559-664]. Despite extensive study, the impact of this enzyme on control of the excitability of neuron populations in the mammalian nervous system in situ is unknown. To address this question, we studied transgenic mice carrying a null mutation (-/-) for the alpha subunit of CaMK. In contrast to wild-type littermates, null mutants exhibit profound hyperexcitability, evident in epileptic seizures involving limbic structures including the hippocampus. No evidence of increased excitability was detected in mice carrying null mutations of the gamma isoform of protein kinase C, underscoring the specificity of the effect of CaMK. CaMK plays a powerful and previously underappreciated role in control of neuronal excitability in the mammalian nervous system. These insights have important implications for analyses of mechanisms of epilepsy and, perhaps, learning and memory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Golgi alpha-mannosidase II (alpha-MII) is an enzyme involved in the processing of N-linked glycans. Using a previously isolated murine cDNA clone as a probe, we have isolated cDNA clones encompassing the human alpha-MII cDNA open reading frame and initiated isolation of human genomic clones. During the isolation of genomic clones, genes related to that encoding alpha-MII were isolated. One such gene was found to encode an isozyme, designated alpha-MIIx. A 5-kb cDNA clone encoding alpha-MIIx was then isolated from a human melanoma cDNA library. However, comparison between alpha-MIIx and alpha-MII cDNAs suggested that the cloned cDNA encodes a truncated polypeptide with 796 amino acid residues, while alpha-MII consists of 1144 amino acid residues. To reevaluate the sequence of alpha-MIIx cDNA, polymerase chain reaction (PCR) was performed with lymphocyte mRNAs. Comparison of the sequence of PCR products with the alpha-MIIx genomic sequence revealed that alternative splicing of the alpha-MIIx transcript can result in an additional transcript encoding a 1139-amino acid polypeptide. Northern analysis showed transcription of alpha-MIIx in various tissues, suggesting that the alpha-MIIx gene is a housekeeping gene. COS cells transfected with alpha-MIIx cDNA containing the full-length open reading frame showed an increase of alpha-mannosidase activity. The alpha-MIIx gene was mapped to human chromosome 15q25, whereas the alpha-MII gene was mapped to 5q21-22.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon 22, Q[22] X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small a-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow a migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As Doenças Lisososomais de Sobrecarga (DLS) são um grupo de mais de 50 doenças hereditárias do metabolismo, sendo a maioria causada por defeitos em enzimas lisossomais específicas. A característica distintiva das DLS é a acumulação lisossomal do(s) substrato(s) não degradado(s), bem como a acumulação de outro material secundariamente à disfunção lisossomal. A apresentação clínica destas patologias é bastante heterogénea, variando desde formas pré-natais, até apresentações infantis ou na idade adulta, sendo frequente a presença de atraso psicomotor e neurodegeneração progressiva. Neste artigo são apresentados os resultados de vários estudos de caracterização molecular efetuados ao longo da última década (2006-2016) em doentes portugueses com as seguintes DLS: Mucopolissacaridose II, Mucopolissacaridose IIIA, Mucopolissacaridose IIIB, Mucopolissacaridose IIIC, Sialidose, Galactosialidose, Gangliosidose GM1, Mucolipidose II alfa/beta, Mucolipidose III alfa/beta, Mucolipidose III gama e Doença de Unverricht-Lundborg. De um modo geral, estes trabalhos permitiram conhecer as variações genéticas associadas a estas DLS, analisar a sua distribuição na população portuguesa e compreender o seu papel na forma de apresentação clínica destas patologias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of DNA topoisomerase II alpha and beta genes was studied in murine normal tissues. Northern blot analysis using probes specific for the two genes showed that the patterns of expression were different among 22 tissues of adult mice. Expression levels of topoisomerase II alpha gene were high in proliferating tissues, such as bone marrow and spleen, and undetectable or low in 17 other tissues. In contrast, high or intermediate expression of topoisomerase II beta gene was found in a variety of tissues (15) of adult mice, including those with no proliferating cells. Topoisomerase II gene expression was also studied during murine development. In whole embryos both genes were expressed at higher levels in early than late stages of embryogenesis. Heart, brain and liver of embryos two days before delivery, and these same tissues plus lung and thymus of newborn (1-day-old) mice expressed appreciable levels of the two genes. Interestingly, a post-natal induction of the beta gene expression was observed in the brain but not in the liver; conversely, the expression of the alpha gene was increased 1 day after birth in the liver but not in the brain. However, gene expression of a proliferation-associated enzyme, thymidylate synthase, was similar in these tissues between embryos and newborns. Thus, the two genes were differentially regulated in the post-natal period, and a tissue-specific role may be suggested for the two isoenzymes in the development of differentiated tissues such as the brain and liver. Based on the differential patterns of expression of the two isoforms, this analysis indicates that topoisomerase II alpha may be a specific marker of cell proliferation, whereas topoisomerase II beta may be implicated in functions of DNA metabolism other than replication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topoisomerase inhibitors are agents with anticancer activity. 7"-O-Methyl-agathisflavone (I) and amentoflavone (II) are biflavonoids and were isolated from the Brazilian plants Ouratea hexasperma and O. semiserrata, respectively. These biflavonoids and the acetyl derivative of II (IIa) are inhibitors of human DNA topoisomerases I at 200 µM, as demonstrated by the relaxation assay of supercoiled DNA, and only agathisflavone (I) at 200 µM also inhibited DNA topoisomerases II-alpha, as observed by decatenation and relaxation assays. The biflavonoids showed concentration-dependent growth inhibitory activities on Ehrlich carcinoma cells in 45-h culture, assayed by a tetrazolium method, with IC50 = 24 ± 1.4 µM for I, 26 ± 1.1 µM for II and 10 ± 0.7 µM for IIa. These biflavonoids were assayed against human K562 leukemia cells in 45-h culture, but only I showed 42% growth inhibitory activity at 90 µM. Our results suggest that biflavonoids are targets for DNA topoisomerases and their cytotoxicity is dependent on tumor cell type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The relationship between predictive proteins and tumors presenting cancer stem cells (CSCs) profiles in oral tumors is still poorly understood. This study aims to identify the relationship between topoisomerases I, II alpha, and III alpha and putative CSCs immunophenotype in oral squamous cell carcinoma (OSCC) and determine its influence on prognosis. METHODS: The following data were retrieved from 127 patients: age, gender, primary anatomic site, smoking and alcohol intake, recurrence, metastases, histologic classification, treatment, and survival. An immunohistochemical study for topoisomerases I, II alpha, and III alpha was performed in a tissue microarray containing 127 paraffin blocks of OSCCs. RESULTS: In univariate analysis, topoisomerases expression showed significant differences according to CSCs profiles and p53 immunoexpression, but not with survival. Topoisomerases II alpha and III alpha also showed significant relationship with lymph node metastasis. The multivariate test confirmed these associations. CONCLUSIONS: The results that all topoisomerases correlates with OSCC CSCs may indicate a role for topoisomerases in head and neck carcinogenesis. Notwithstanding, it is plausible that other members of topoisomerases family could represent novel therapeutical targets in oral squamous cell carcinoma. J Oral Pathol Med (2012) 41: 762-768

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is a Polycomb group protein that is able to induce telomerase activity, enabling the immortalization of epithelial cells. Immortalized cells are more susceptible to double-strand breaks (DSB), which are subsequently repaired by homologous recombination (HR). BRCA1 is among the HR regulatory genes involved in the response to DNA damage associated with the RAD51 protein, which accumulates in DNA damage foci after signaling H2AX, another important marker of DNA damage. Topoisomerase III beta (topoIII beta) removes HR intermediates before chromosomal segregation, preventing damage to cellular DNA structure. In breast carcinomas positive for BMI-1 the role of proteins involved in HR remains to be investigated. The aim of this study was to evaluate the association between BMI-1 and homologous recombination proteins. Using tissue microarrays containing 239 cases of primary breast tumors, the expression of Bmi-1, BRCA-1, H2AX, Rad51, p53, Ki-67, topoIII beta, estrogen receptors (ER), progesterone receptors (PR), and HER-2 was analyzed by immunohistochemistry. We observed high Bmi-1 expression in 66 cases (27.6%). Immunohistochemical overexpression of BMI-1 was related to ER (p=0.004), PR (p<0.001), Ki-67 (p<0.001), p53 (p=0.003), BRCA1 (p=0.003), H2AX (p=0.024) and topoIII beta (p<0,001). Our results show a relationship between the expression of BMI-1 and HR regulatory genes, suggesting that Bmi-1 overexpression might be an important event in HR regulation. However, further studies are necessary to understand the mechanisms in which Bmi-1 could regulate HR pathways in invasive ductal breast carcinomas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HER-2-positive breast cancers frequently sustain elevated AKT/mTOR signaling, which has been associated with resistance to doxorubicin treatment. Here, we investigated whether rapamycin, an mTOR inhibitor, increased the sensitivity to doxorubicin therapy in two HER-2-overexpressing cell lines: C5.2, which was derived from the parental HB4a by transfection with HER-2 and SKBR3, which exhibits HER-2 amplification. The epithelial mammary cell line HB4a was also analyzed. The combined treatment using 20 nmol/L of rapamycin and 30 nmol/L of doxorubicin arrested HB4a and C5.2 cells in S to G(2)-M, whereas SKBR3 cells showed an increase in the G(0)-G(1) phase. Rapamycin increased the sensitivity to doxorubicin in HER-2-overexpressing cells by approximately 2-fold, suggesting that the combination displayed a more effective antiproliferative action. Gene expression profiling showed that these results might reflect alterations in genes involved in canonical pathways related to purine metabolism, oxidative phosphorylation, protein ubiquitination, and mitochondrial dysfunction. A set of 122 genes modulated by the combined treatment and specifically related to HER-2 overexpression was determined by finding genes commonly regulated in both C5.2 and SKBR3 that were not affected in HB4a cells. Network analysis of this particular set showed a smaller subgroup of genes in which coexpression pattern in HB4a cells was disrupted in C5.2 and SKBR3. Altogether, our data showed a subset of genes that might be more robust than individual markers in predicting the response of HER-2-overexpressing breast cancers to doxorubicin and rapamycin combination. Mol Cancer Ther; 11(2); 464-74. (C) 2011 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topoisomerase 2 alpha (), HER-2/ and are genes that lie on chromosome 17 and correlate with the prognosis and prediction of target-driven therapy against tumors. In a previous study, we showed that TOP2A transcripts levels were significantly higher in soft tissue sarcomas (STS) than in benign tumors and desmoid-type fibromatoses (FM). Because these genes have been insufficiently examined in STS, we aimed to identify alterations in TOP2A and HER-2 expression by fluorescent in situ hybridization and immunohistochemistry, as well as that of survivin, and correlate them with clinicopathologic findings to assess their prognostic value. Eighteen FM and 244 STS were included. Fluorescent in situ hybridization and immunohistochemistry were performed on a tissue microarray. TOP2A and survivin were more highly expressed in sarcomas than in FM. TOP2A was an independent predictor of an unfavorable prognosis; it was combined with formerly established prognostic factors (primarily histologic grade and tumor size at diagnosis) to create a prognostic index that evaluated overall survival. Gene amplification/polysomy (13%) did not correlate with protein overexpression. Survivin and HER-2 expression were not associated with patient outcomes. These findings might become valuable in the management of patients with STS and possibly in the prospective evaluation of responses to new target-driven therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Cardiac remodeling in uremia is characterized by left ventricular hypertrophy, interstitial fibrosis and microvascular disease. Cardiovascular disease is the leading cause of death in uremic patients, but coronary events alone are not the prevalent cause, sudden death and heart failure are. We studied the cardiac remodeling in experimental uremia, evaluating the isolated effect of parathyroid hormone (PTH) and phosphorus. Methods. Wistar rats were submitted to parathyroidectomy (PTx) and 5/6 nephrectomy (Nx); they also received vehicle (V) and PTH at normal (nPTH) or high (hPTH) doses. They were fed with a poor-phosphorus (pP) or rich-phosphorus (rP) diet and were divided into the following groups: 'Sham': G1 (V + normal-phosphorus diet (np)) and 'Nx + PTx': G2 (nPTH + pP), G3 (nPTH + rP), G4 (hPTH + pP) and G5 (hPTH + rP). After 8 weeks, biochemical analysis, myocardium morphometry and arteriolar morphological analysis were performed. In addition, using immunohistochemical analysis, we evaluated angiotensin II, alpha-actin, transforming growth factor-beta (TGF-beta) and nitrotyrosine, as well as fibroblast growth factor-23 (FGF-23), fibroblast growth factor receptor-1 (FGFR-1) and runt-related transcription factor-2 (Runx-2) expression. Results. Nx animals presented higher serum creatinine levels as well as arterial hypertension. Higher PTH levels were associated with myocardial hypertrophy and fibrosis as well as a higher coronary lesion score. High PTH animals also presented a higher myocardial expression of TGF-beta, angiotensin II, FGF-23 and nitrotyrosine and a lower expression of alpha-actin. Phosphorus overload was associated with higher serum FGF-23 levels and Runx-2, as well as myocardial hypertrophy. FGFR-1 was positive in the cardiomyocytes of all groups as well as in calcified coronaries of G4 and G5 whereas Runx-2 was positive in G3, G4 and G5. Conclusion. In uremia, PTH and phosphorus overload are both independently associated with major changes related to the cardiac remodeling process, emphasizing the need for a better control of these factors in chronic kidney disease.