801 resultados para Hyperbolic space


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interference in a phase space algorithm of Schleich and Wheeler [Nature 326, 574 (1987)] is extended to the hyperbolic space underlying the group SU(1,1). The extension involves introducing the notion of weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the generators of su(1,1) thus obtained are found to be in excellent agreement with the numerical results.[S1050-2947(98)08602-8].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the horospherical geometry of submanifolds in hyperbolic space. The main result is a formula for the total absolute horospherical curvature of M, which implies, for the horospherical geometry, the analogues of classical inequalities of the Euclidean Geometry. We prove the horospherical Chern-Lashof inequality for surfaces in 3-space and the horospherical Fenchel and Fary-Milnor`s theorems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study horo-tight immersions of manifolds into hyperbolic spaces. The main result gives several characterizations of horo-tightness of spheres, answering a question proposed by Cecil and Ryan. For instance, we prove that a sphere is horo-tight if and only if it is tight in the hyperbolic sense. For codimension bigger than one, it follows that horo-tight spheres in hyperbolic space are metric spheres. We also prove that horo-tight hyperspheres are characterized by the property that both of its total absolute horospherical curvatures attend their minimum value. We also introduce the notion of weak horo-tightness: an immersion is weak horo-tight if only one of its total absolute curvature attends its minimum. We prove a characterization theorem for weak horo-tight hyperspheres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the isoperimetric problem of finding the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by studying the behavior of the profile curves of the rotational surfaces with constant mean curvature in hyperbolic 3-space. We also classify all the connected compact rotational surfaces M of constant mean curvature that are contained in the region between two horospheres, have boundary partial derivative M either empty or lying on the horospheres, and meet the horospheres perpendicularly along their boundary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have analyzed surface-wave propagation that takes place at the boundary between an isotropic medium and a semi-infinite metal-dielectric periodic medium cut normally to the layers. In the range of frequencies where the periodic medium shows hyperbolic space dispersion, hybridization of surface waves (dyakonons) occurs. At low to moderate frequencies, dyakonons enable tighter confinement near the interface in comparison with pure SPPs. On the other hand, a distinct regime governs dispersion of dyakonons at higher frequencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately since the influence of the moments of inertia on the trajectories tends to zero as the scaling factor increases. The semidirect product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a paper presented a few years ago, de Lorenci et al. showed, in the context of canonical quantum cosmology, a model which allowed space topology changes. The purpose of this present work is to go a step further in that model, by performing some calculations only estimated there for several compact manifolds of constant negative curvature, such as the Weeks and Thurston spaces and the icosahedral hyperbolic space (Best space). ©2000 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaluation of relativistic spin networks plays a fundamental role in the Barrett-Crane state sum model of Lorentzian quantum gravity in 4 dimensions. A relativistic spin network is a graph labelled by unitary irreducible representations of the Lorentz group appearing in the direct integral decomposition of the space of L^2 functions on three-dimensional hyperbolic space. To `evaluate' such a spin network we must do an integral; if this integral converges we say the spin network is `integrable'. Here we show that a large class of relativistic spin networks are integrable, including any whose underlying graph is the 4-simplex (the complete graph on 5 vertices). This proves a conjecture of Barrett and Crane, whose validity is required for the convergence of their state sum model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genuinely multidimensional schemes, hyperbolic systems, wave equations, Euler equations, evolution Galerkin schemes, space-time conservative methods, high order accuracy, shock solutions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some properties of generalized canonical systems - special dynamical systems described by a Hamiltonian function linear in the adjoint variables - are applied in determining the solution of the two-dimensional coast-arc problem in an inverse-square gravity field. A complete closed-form solution for Lagrangian multipliers - adjoint variables - is obtained by means of such properties for elliptic, circular, parabolic and hyperbolic motions. Classic orbital elements are taken as constants of integration of this solution in the case of elliptic, parabolic and hyperbolic motions. For circular motion, a set of nonsingular orbital elements is introduced as constants of integration in order to eliminate the singularity of the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A few years ago, Cornish, Spergel and Starkman (CSS) suggested that a multiply connected small universe could allow for classical chaotic mixing as a preinflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected fat space-times. Because of the interest in small volume hyperbolic universes (e.g., CSS), we generalize the DHI calculation by making a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static universe, whose spatial sections are the Weeks manifold, the smallest universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The original Casimir effect results from the difference in the vacuum energies of the electromagnetic field, between that in a region of space with boundary conditions and that in the same region without boundary conditions. In this paper we develop the theory of a similar situation, involving a scalar field in spacetimes with closed spatial sections of negative curvature.