985 resultados para Heterogeneous Architecture
Resumo:
Con el auge del Cloud Computing, las aplicaciones de proceso de datos han sufrido un incremento de demanda, y por ello ha cobrado importancia lograr m�ás eficiencia en los Centros de Proceso de datos. El objetivo de este trabajo es la obtenci�ón de herramientas que permitan analizar la viabilidad y rentabilidad de diseñar Centros de Datos especializados para procesamiento de datos, con una arquitectura, sistemas de refrigeraci�ón, etc. adaptados. Algunas aplicaciones de procesamiento de datos se benefician de las arquitecturas software, mientras que en otras puede ser m�ás eficiente un procesamiento con arquitectura hardware. Debido a que ya hay software con muy buenos resultados en el procesamiento de grafos, como el sistema XPregel, en este proyecto se realizará una arquitectura hardware en VHDL, implementando el algoritmo PageRank de Google de forma escalable. Se ha escogido este algoritmo ya que podr��á ser m�ás eficiente en arquitectura hardware, debido a sus características concretas que se indicaráan m�ás adelante. PageRank sirve para ordenar las p�áginas por su relevancia en la web, utilizando para ello la teorí��a de grafos, siendo cada página web un vértice de un grafo; y los enlaces entre páginas, las aristas del citado grafo. En este proyecto, primero se realizará un an�álisis del estado de la técnica. Se supone que la implementaci�ón en XPregel, un sistema de procesamiento de grafos, es una de las m�ás eficientes. Por ello se estudiará esta �ultima implementaci�ón. Sin embargo, debido a que Xpregel procesa, en general, algoritmos que trabajan con grafos; no tiene en cuenta ciertas caracterí��sticas del algoritmo PageRank, por lo que la implementaci�on no es �optima. Esto es debido a que en PageRank, almacenar todos los datos que manda un mismo v�értice es un gasto innecesario de memoria ya que todos los mensajes que manda un vértice son iguales entre sí e iguales a su PageRank. Se realizará el diseño en VHDL teniendo en cuenta esta caracter��ística del citado algoritmo,evitando almacenar varias veces los mensajes que son iguales. Se ha elegido implementar PageRank en VHDL porque actualmente las arquitecturas de los sistemas operativos no escalan adecuadamente. Se busca evaluar si con otra arquitectura se obtienen mejores resultados. Se realizará un diseño partiendo de cero, utilizando la memoria ROM de IPcore de Xillinx (Software de desarrollo en VHDL), generada autom�áticamente. Se considera hacer cuatro tipos de módulos para que as�� el procesamiento se pueda hacer en paralelo. Se simplificar�á la estructura de XPregel con el fin de intentar aprovechar la particularidad de PageRank mencionada, que hace que XPregel no le saque el m�aximo partido. Despu�és se escribirá el c�ódigo, realizando una estructura escalable, ya que en la computación intervienen millones de páginas web. A continuación, se sintetizar�á y se probará el código en una FPGA. El �ultimo paso será una evaluaci�ón de la implementaci�ón, y de posibles mejoras en cuanto al consumo.
Resumo:
Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional Memory (TM) represents an optimistic approach for shared-memory synchronization. To take full advantage of the features offered by software TM, but also benefit from the characteristics of the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the power/performance requirements of the application and what it is offered by the architecture. In order to understand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experiments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which requires the computing performance that the big cores offer.
Resumo:
Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.
Resumo:
We propose a methodology for optimizing the execution of data parallel (sub-)tasks on CPU and GPU cores of the same heterogeneous architecture. The methodology is based on two main components: i) an analytical performance model for scheduling tasks among CPU and GPU cores, such that the global execution time of the overall data parallel pattern is optimized; and ii) an autonomic module which uses the analytical performance model to implement the data parallel computations in a completely autonomic way, requiring no programmer intervention to optimize the computation across CPU and GPU cores. The analytical performance model uses a small set of simple parameters to devise a partitioning-between CPU and GPU cores-of the tasks derived from structured data parallel patterns/algorithmic skeletons. The model takes into account both hardware related and application dependent parameters. It computes the percentage of tasks to be executed on CPU and GPU cores such that both kinds of cores are exploited and performance figures are optimized. The autonomic module, implemented in FastFlow, executes a generic map (reduce) data parallel pattern scheduling part of the tasks to the GPU and part to CPU cores so as to achieve optimal execution time. Experimental results on state-of-the-art CPU/GPU architectures are shown that assess both performance model properties and autonomic module effectiveness. © 2013 IEEE.
Resumo:
AIM: To evaluate the host response of the gel and porous polyethylene implants in anophthalmic cavities using the B scan ultrasound.METHODS: Thirty-six white rabbits underwent unilateral enucleation with placement of gel or porous polyethylene spheres implants. The animals were submitted to clinical examination weekly and to ultrasound evaluation on 30, 60 and 90 days after surgery.RESULTS: All rabbits with gel polyethylene spheres, except one, showed implant extrusion probably because the gel spheres have hydrated and increased in volume. The B ultrasound of the gel polyethylene implant did not show vessels inside during the following period. Five animals (27.8%) with porous polyethylene spheres presented implant extrusion after 30 days of surgery. According to B ultrasound, the porous polyethylene implant showed irregular and heterogeneous architecture and reflective peaks similar to vascularized tissues.CONCLUSION: More studies are required to determine the ideal volume of gel polyethylene implant necessary to correct the diminished orbital content in the anophthalmic cavity. The B ultrasound effectiveness showed in this study for anophthalmic socket implants evaluation provides useful information for further in vivo studies and might substitute expensive methods of implants vascularization evaluation,
Resumo:
This paper presents an investigation into applying Case-Based Reasoning to Multiple Heterogeneous Case Bases using agents. The adaptive CBR process and the architecture of the system are presented. A case study is presented to illustrate and evaluate the approach. The process of creating and maintaining the dynamic data structures is discussed. The similarity metrics employed by the system are used to support the process of optimisation of the collaboration between the agents which is based on the use of a blackboard architecture. The blackboard architecture is shown to support the efficient collaboration between the agents to achieve an efficient overall CBR solution, while using case-based reasoning methods to allow the overall system to adapt and “learn” new collaborative strategies for achieving the aims of the overall CBR problem solving process.
Resumo:
The most promising way to maintain reliable data transfer across the rapidly fluctuating channels used by next generation multiple-input multiple-output communications schemes is to exploit run-time variable modulation and antenna configurations. This demands that the baseband signal processing architectures employed in the communications terminals must provide low cost and high performance with runtime reconfigurability. We present a softcore-processor based solution to this issue, and show for the first time, that such programmable architectures can enable real-time data operation for cutting-edge standards
such as 802.11n; furthermore, by exploiting deep processing pipelines and interleaved task execution, the cost and performance of these architectures is shown to be on a par with traditional dedicated circuit based solutions. We believe this to be the first such programmable architecture to achieve this, and the combination of implementation efficiency and programmability makes this implementation style the most promising approach for hosting such dynamic architectures.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
Heterogeneous waveband switching (HeteroWBS) in WDM networks reduces the network operational costs. We propose an autonomous clustering-based HeteroWBS architecture to support the design of efficient HeteroWBS algorithms under dynamic traffic requests in such a network.
Resumo:
Runtime management of distributed information systems is a complex and costly activity. One of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime resources. This article presents a monitoring architecture for heterogeneous and distributed information systems. It is composed of two elements: an information model and an agent infrastructure. The model negates the complexity and variability of these systems and enables the abstraction over non-relevant details. The infrastructure uses this information model to monitor and manage the modeled environment, performing and detecting changes in execution time. The agents infrastructure is further detailed and its components and the relationships between them are explained. Moreover, the proposal is validated through a set of agents that instrument the JEE Glassfish application server, paying special attention to support distributed configuration scenarios.
Resumo:
This article proposes a MAS architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypothesis generation and hypothesis confirmation. The first process is distributed among several agents based on a MSBN, while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both inference processes. To drive the deliberation process, dynamic data about the influence of observations are taken during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlight as conclusions.
Resumo:
Cloud computing and, more particularly, private IaaS, is seen as a mature technology with a myriad solutions tochoose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock-in. Several competing and incompatible interfaces and management styles have given even more voice to these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this paper, we propose a management architecture that tries to tackle these problems; it offers a common way of managing several cloud solutions, and an interface that can be tailored to the needs of the user. This management architecture is designed in a modular way, and using a generic information model. We have validated our approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStack