994 resultados para Her-2 Neu Oncogene
Resumo:
A incidência de adenocarcinoma de esôfago e cárdia tem aumentado nas últimas décadas por razões ainda não conhecidas. São doenças da civilização ocidental. A incidência de adenocarcinoma de esôfago e carcinoma de cárdia ultrapassou a de carcinoma epidermóide de esôfago. O desenvolvimento da biologia molecular e descoberta de oncogenes e genes supressores de tumores permitiu novos achados e melhor entendimento das características moleculares dos carcinomas de esôfago e cárdia. Novos genes envolvidos em ciclo celular, apoptose e reparo de DNA são agora alvo importante de estudos da patogênese destes tumores. HER-2/neu é um oncogene expresso in diversas neoplasias e relacionado à pior prognóstico. P53 é igualmente importante estando mutado em 50%-70% das neoplasias sólidas com implicações clínicas para muitos tumores. Este trabalho determina a frequência de p53 e HER-2/neu através de imunohistoquímica utilizando anticorpos policlonais e monoclonais DAKO anti-HER-2/neu e p53 respectivamente. Foram selecionados 22 casos de adenocarcinoma de esôfago e carcinoma de cárdia do departamento de cirurgia. HER-2/neu foi positivo em 47.7% dos casos, média entre dois observadores. P53 foi positivo em 36.6% dos casos. A correlação entre os escores de HER-2/neu e p53 foi estabelecida usando o coeficiente de correlação de Spearman que mostrou um resultado negativo –0.27 para o primeiro observador que não foi significante. Para o segundo observador, a correlação foi a mesma -0.27 e não significante, mostrando que o aumento na expressão de HER-2/neu não está relacionada com aumento de expressão de p53. Nós concluímos que a expressão de HER-2/neu neste grupo de neoplasias, necessita de investigações futuras e que mesmo estando alterado com muitos outros oncogenes em outros trabalhos, p53 não está correlacionado com aumento de expressão de HER-2/neu nesta série de casos.
Resumo:
In Tumoren und Onkogen-transformierten Zellen finden sich häufig Defizienzen in der Expression von Komponenten der MHC Klasse I-Antigenprozessierung, die mit einer verminderten MHC Klasse I-Oberflächenexpression und einer reduzierten Sensitivität der Zellen gegenüber einer ZTL-vermittelten Lyse gekoppelt sein können. Da in den meisten Fällen die reduzierten Expressionsmuster über Zytokine revertiert werden können, werden verschiedene Regulationsmechanismen als Ursache für die Defizienzen postuliert. Auch in Zellen, die den „human epidermal growth factor receptor 2“ (HER-2/neu) überexprimieren, wurden derartige „Immune escape“-Mechanismen identifiziert. Aufgrund der Amplifikation und/oder Überexpression dieses Onkogens in Tumoren, die mit einer schnellen Progression der Erkrankung und einer schlechten Heilungsprognose assoziiert ist, wurden zahlreiche Therapien entwickelt, die auf einer Mobilisierung des Immunsystems gegenüber HER-2/neu oder dessen Blockade durch spezifische Antikörper abzielen. Die bisher jedoch nur unzureichenden Erfolge dieser Therapien könnten ihre Ursache in einer verminderten Immunogenität der HER-2/neu+-Zellen aufgrund von Defizienzen in der MHC Klasse I-Antigenprozessierung haben, weshalb die Untersuchung der molekularen Ursachen dieser Suppression für die Therapie von HER-2/neu+-Tumoren von besonderer Bedeutung ist. In dieser Arbeit wurde anhand eines in vitro-Systems ein HER-2/neu-vermittelter „Immune escape“-Phänotyp charakterisiert und die zugrunde liegenden molekularen Mechanismen untersucht. Hierzu wurden murine, HER-2/neu--NIH3T3-Zellen mit HER-2/neu-transfizierten NIH3T3-Zellen verglichen. Die Untersuchung zeigte, dass die Oberflächenexpression von MHC Klasse I-Antigenen bei einer HER-2/neu-Überexpression vermindert ist. Dies ist assoziiert mit reduzierten Expressionen von LMP2, LMP10, PA28a, PA28b, ERAAP, TAP1, TAP2, und Tapasin, einem blockiertem TAP-Transport und einer fehlenden Sensitivität gegenüber einer ZTL-vermittelten Lyse. Da die analysierten Defekte durch eine Stimulation mit IFN‑g wieder revertiert werden können, wird eine transkriptionelle oder translationelle Regulation der betroffenen Gene durch HER-2/neu postuliert. Aufgrund dieser Ergebnisse ist eine T-Zell-vermittelte Therapie von HER-2/neu+-Tumoren als kritisch anzusehen. Die Untersuchung der Promotoren von TAP1/LMP2, TAP2 und Tapasin ergab geringere und durch IFN‑g-induzierbare Promotoraktivitäten in den HER-2/neu+-Zellen im Vergleich zu den HER-2/neu—-Zellen. Mittels Mutagenese-PCR und Gelretardationsanalysen konnte die Bindung eines Komplexes an zwei E2F- und einer P300-Bindungsstelle im Tapasin-Promotor identifiziert werden, die für die HER-2/neu-vermittelte Hemmung der Tapasin-Promotoraktivität essentiell ist. Eine Inaktivierung der E2F- und P300-Motve in den TAP1/LMP2- und TAP2-Promotoren hatte dagegen keinen Einfluss auf die HER-2/neu-vermittelte Blockade der Promotoraktivität. Ein Vergleich der Promotoraktivitäten der HER-2/neu+- mit Ras-transformierten Zellen ergab, dass die TAP1/LMP2- und TAP2-Promotoren in beiden Zellen supprimiert werden, während der Tapasin-Promotor bei Ras-Transformation nicht beeinträchtigt ist. Der Einsatz von Inhibitoren zeigte, dass die Suppression des Tapasin-Promotors vermutlich über die PLC-g-PKC-Kaskade erfolgt. Dagegen konnte mit Inhibitoren gegen MAPK und PI3Kinase kein vergleichbarer Effekt erzielt werden. Aufgrund dieser Daten wird postuliert, dass HER-2/neu über die Signalkaskade PLC-g–PKC–E2F/P300 die Tapasin-Promotoraktivität supprimiert, wohingegen noch bisher unbekannte Signalkaskaden von HER-2/neu und Ras zu einer Hemmung der TAP1/LMP2- und TAP2-Promotoraktivität führen. Da die Komplexbildung von E2F und P300 auch im Zellzyklus eine Rolle spielt, wird eine negative Korrelation zwischen Zell-Proliferation und MHC Klasse I-Antigenpräsentation postuliert, die Gegenstand künftiger Studien sein wird.
Resumo:
Objective: To assess the safety/tolerability of the combination lapatinib (L) and docetaxel (D) in patients with Her 2/neu overexpressing breast cancer (BC). This study is important as it will define how to deliver lapatinib with taxotere, a highly active drug in breast cancer. Patients and Methods: Female patients (pts) with locally advanced, inflammatory or large operable BC were treated with escalating doses of L from 1000 to 1250 mg/day, in combination with D given IV every 21 days at doses ranging from 75 to 100 mg/m2 for 4 cycles. At least 3 pts were treated at each dose level. The definition of dose limiting toxicity (DLT) is based on the toxicity assessed at cycle 1 as follows: any grade 3−4 non hematological toxicity, ANC < 0.5 G/L lasting for 7 days or more, febrile neutropenia or thrombocytopenia <25 G/L. GCSF was not permitted as primary prophylaxis. Core biopsies were mandatory at baseline and after cycle 4. Pharmcokinetic (PK) samples were collected on day 1 of cycles 1 and 2. Results: To date, 18 pts with a median age of 53 years (range 36−65) have been enrolled at 5 Dose Levels (DLs). The toxicity profile for 18 patients (68 documented cycles) is summarized below. At DL5 (1000/100), 2 pts had DLTs (neutropenia grade 4 _7 days and febrile neutropenia), and 3 additional pts were enrolled with primary prophylactic G-CSF. As expected, the safety profile improved and the dose escalation will continue with prophylactic G-CSF to investigate DL6 (1250/100). These findings are consistent with published Phase I data for this combination [1]. N= 18 patients n (%) Grade 1 Grade 2 Grade 3 Grade 4 neutropenia 1 (6) 3 (17) 13 (72) febrile neutropenia 2 (11) fatigue 8 (44) 7 (39) diarrhoea 9 (50) 3 (17) pain: joint/muscle/other 5 (28)/4 (22)/3 (17) 4 (22)/4 (22)/3 (17) 0/0/1 (6) constipation 2 (11) 3 (17) 1 (6) elevated transaminases SGPT/SGOT 7 (39)/5 (28) Conclusions: The main toxicity of the L + D combination is haematological and was reached at DL5 (1000/100), without primary GCSF. An additional DL6 with primary prophylactic GCSF is being investigated (1250/100). PK data will be presented at the meeting plus the recommended dose for phase II studies.
Resumo:
OBJECTIVES: To determine the prevalence of Her-2/Neu-cerbb-2 in the gastric mucosa of patients with gastric adenocarcinoma in a brazilian patient group. METHODS: The immunohistochemical expression of Her-2/Neu was studied in 37 formalin-fixed paraffin-embedded tissue sections. RESULTS: The immunohistochemical reaction produced by the anti-HER-2/Neu antibody was positive in two cases (5.4%). CONCLUSION: The low prevalence of Her-2/Neu observed in these southern brazilian cases is probably due to the great number of poorly differentiated cancers in this serie.
Resumo:
Resumo não disponível
Resumo:
INTRODUÇÃO: A hiperexpressão de human epidermal growth factor receptor (HER-2/neu) e a amplificação do seu gene são indicadores de formas mais agressivas do câncer de mama. A Food and Drug Administration (FDA) aprovou o teste denominado HercepTest® com a finalidade de selecionar pacientes com indicação para o uso de um anticorpo humanizado anti-HER-2/neu (trastuzumab), com efeito terapêutico comprovado. OBJETIVOS: O presente trabalho tem como objetivo comparar os resultados obtidos pelos métodos imuno-histoquímicos LSAB®+ com a utilização de anticorpo A0485 e HercepTest®. Material e métodos: Foram utilizados 50 casos de carcinoma de mama nos quais a pesquisa da hiperexpressão de HER-2 pelo método LSAB®+ já havia sido realizada. Foi repetida a pesquisa da hiperexpessão de HER-2/neu nos mesmos casos, utilizando-se o método do HercepTest®. RESULTADOS: 34 casos foram considerados negativos pelos dois métodos, com escore 0 pelo método HercepTest®. Destes, 12 obtiveram escore 1+ e 22 obtiveram escore 0 pelo método LSAB®+. em oito casos, o escore foi 2+ pelos dois métodos. Escore 3+ foi encontrado também em oito casos pelos dois métodos. DISCUSSÃO: O método mais prático utilizado em laboratório de rotina diagnóstica para investigar a hiperexpressão de HER-2/neu é o estudo imuno-histoquímico. em função de muitas variáveis, como tempo de fixação, tipo de fixador, duração da fixação, método de recuperação antigênica e tipo de anticorpo utilizado, pode haver divergência de resultados. CONCLUSÃO: O presente estudo concluiu que o método HercepTest®demonstrou resultados equivalentes aos resultados obtidos pelo método LSAB®+ em carcinoma de mama.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the relationship of amplification and polysomy of both the CCND1 and the ERBB2 (alias HER-2/NEU) genes to the overexpression of their proteins in esophageal and gastric cancers and also their association with clinicopathological features. CCND1 gene amplification (45%) was more prevalent than polysomy (25%) in esophageal carcinoma, but the pattern observed was similar in gastric adenocarcinoma (10% amplification, 15% polysomy). For ERBB2, polysomy was a more frequent mechanism than amplification in both esophageal (32.5 vs. 7.5%) and gastric (15 vs. 5%) cancers. Overexpression of cyclin D1 protein was identified in 37.5% of the specimens of esophageal tumors and 35% of gastric tumors, and overexpression of Her-2/neu protein in 12.5 and 7.5%, respectively. The K-statistics revealed a fair agreement in both types of turners only in overexpression and amplification of the CCND1 ggene; the ERBB2 gene showed a fair agreement in amplification and polysomy and the level of protein expression in gastric adenocarcinorna. Thus, polysomy 17 could contribute to a high Her-2/neu protein level, at least in gastric cancer. Our data indicated an association with alcohol consumption and the CCND1 gene or protein levels, in both esophageal and gastric cancers. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Topoisomerase 2 alpha (), HER-2/ and are genes that lie on chromosome 17 and correlate with the prognosis and prediction of target-driven therapy against tumors. In a previous study, we showed that TOP2A transcripts levels were significantly higher in soft tissue sarcomas (STS) than in benign tumors and desmoid-type fibromatoses (FM). Because these genes have been insufficiently examined in STS, we aimed to identify alterations in TOP2A and HER-2 expression by fluorescent in situ hybridization and immunohistochemistry, as well as that of survivin, and correlate them with clinicopathologic findings to assess their prognostic value. Eighteen FM and 244 STS were included. Fluorescent in situ hybridization and immunohistochemistry were performed on a tissue microarray. TOP2A and survivin were more highly expressed in sarcomas than in FM. TOP2A was an independent predictor of an unfavorable prognosis; it was combined with formerly established prognostic factors (primarily histologic grade and tumor size at diagnosis) to create a prognostic index that evaluated overall survival. Gene amplification/polysomy (13%) did not correlate with protein overexpression. Survivin and HER-2 expression were not associated with patient outcomes. These findings might become valuable in the management of patients with STS and possibly in the prospective evaluation of responses to new target-driven therapies.
Resumo:
Shc proteins are implicated in coupling receptor tyrosine kinases to the mitogen-activated protein kinase (MAPK) pathway by recruiting Grb2/SOS to the plasma membrane. To better understand the role of Shc in oncogenesis brought about by point mutation activated neu (p185*), we transfected a Shc mutant (ShcΔCH1), which lacks the Grb2 binding site Y317 by deletion of collagen-homology domain 1, into p185*-transformed NIH3T3 cells. The cellular transformation phenotypes were found to be largely suppressed by expression of ShcΔCH1. This study indicates that Shc plays a critical role in mediating the oncogenical signals of p185*. Although ShcΔCH1 still retained another Grb2 binding site (Y239/240), we did not detect its physical association with Grb2. We also found that ShcΔCH1 could associate with p185*; however, this association did not interfere with the endogenous Shc-p185* interaction or the Shc-Grb2 interaction. In addition, p185*-mediated MAPK/Elk activation, PI3-K activation and Src activation likewise was not inhibited by ShcΔCH1 expression. Taken together, our current study clearly indicates that ShcΔCH1 suppresses the p185*-induced transformation, and that this suppression is mediated through a MAPK-independent and possibly PI3-K, Src-independent pathway. These results suggest that Shc may be involved in other unidentified signal pathways which are critical for p185*-induced cellular transformation besides the three pathways that we have studied. ^
Resumo:
Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^
Resumo:
HER-2/neu is a receptor tyrosine kinase highly homologous with epidermal growth factor receptor. Overexpression and/or amplification of HER-2/neu has been implicated in the genesis of a number of human cancers, especially breast and ovarian cancers. Transcriptional upregulation has been shown to contribute significantly to the overexpression of this gene. Studies on the transcriptional regulation of HER-2/neu gene are important for understanding the mechanism of cell transformation and developing the therapeutic strategies to block HER-2/neu-mediated cancers. PEA3 is a DNA binding transcriptional factor and its consensus sequence exists on the HER-2/neu promoter. To examine the role of PEA3 in HER-2/neu expression and cell transformation, we transfected PEA3 into the human breast and ovarian cancer cells that overexpress HER-2/neu and showed that PEA3 dramatically represses HER-2/neu transcription. PEA3 suppresses the oncogenic neu-mediated transformation in mouse fibroblast NIH 3T3 cells. Expression of PEA3 selectively blocks the growth of human cancer cells that overexpress HER-2/neu and inhibits their colony formation. It does not occur in the cancer cells expressing basal level of HER-2/neu. Further studies in the orthotopic ovarian cancer model demonstrated that expression of PEA3 preferentially inhibits growth and tumor development of human cancer cells that overexpress HER-2/neu, the tumor-bearing mice survived significantly longer if treated by injection of the PEA3-liposome complex intraperitoneally. Immunoblotting and immunohistochemical analysis of the tumor tissues indicated that PEA3 mediates the tumor suppression activity through targeting HER-2/neu-p185. Thus, PEA3 is a negative regulator of HER-2/neu gene expression and functions as a tumor suppressor gene in the HER-2/neu-overexpressing human cancer cells.^ The molecular mechanisms of PEA3 mediated transcriptional repression were investigated. PEA3 binds specifically at the PEA3 site on HER-2/neu promoter and this promoter-binding is required for the PEA3 mediated transcriptional repression. Mutation of the PEA3 binding site on HER-2/neu promoter causes decreased transcriptional activity, indicating that the PEA3 binding site is an enhancer-like element in the HER-2/neu-overexpressing cells. We therefore hypothesized that in the HER-2/neu-overexpressing cells, PEA3 competes with a transactivator for binding to the PEA3 site, preventing the putative factor from activating the transcription of HER-2/neu. This hypothesis was supported by the data which demonstrate that PEA3 competes with another nuclear protein for binding to the HER-2/neu promoter in vitro, and expression of a truncated protein which encodes the DNA binding domain of PEA3 is sufficient to repress HER-2/neu transcription in the HER-2/neu-overexpressing human cancer cells. ^
Resumo:
Aim: HER-2/neu amplification occurs in 15-25% of breast carcinomas. This oncogene, also referred to as c-erbB-2, encodes a transmembrane tyrosine kinase receptor belonging to the epidermal growth factor receptor family. HER-2 over-expression is reported to be associated with a poor prognosis in breast carcinoma patients and in some studies is associated with a poorer response to anti-oestrogen therapy. These patients are less likely to benefit from CMF (cyclophosphamide, methotrexate, fluorouracil)-based chemotherapy compared with anthracycline-based chemotherapy. The aim of this study was to evaluate breast carcinomas to determine hormone receptor status and if there is a difference in breast cancer specific survival for HER-2 positive patients. Methods: A total of 591 breast carcinomas were evaluated using immunohistochemistry (IHC) for oestrogen receptor (ERp), progesterone receptor (PRp) and three different HER2 antibodies (CB11, A0485 and TAB250). Percentage of tumour cells and intensity of staining for ERp were evaluated using a semiquantitative method. Results: Of the 591 tumours, 91 (15.4%) showed 3+ membrane staining for HER-2 with one or more antibodies. Of these 91 tumours, 41 (45.1%) were ERp+/ PRp+, seven (7.7%) were ERp+/PR-, six (6.6%) were ERp-/PRp+ and 37 (40.7%) were ERp-/PR-. Of HER-2 positive tumours, 5.5% showed > 80% 3+ staining for ERp compared with 31.8% of 0-2+ HER-2 tumours; 24.2% of HER-2-positive tumours showed 60% or more cells with 2+ or 3+ staining for ERp. Treatment data were available for 209 patients and no difference was observed in breast cancer specific survival (BCSS) with HER-2 status and tamoxifen. Conclusion: Oestrogen receptor status cannot be used to select tumours for evaluation of HER-2 status, and oestrogen and progesterone receptor positivity does not preclude a positive HER-2 status. There is a higher proportion of ERp negative tumours associated with HER-2 positivity, however, more than 20% of HER-2 positive tumours show moderate or strong staining for ERp. HER-2 positive patients in this study did not show an adverse BCSS with tamoxifen treatment unlike some previous studies.