941 resultados para Hemagglutinin-neuraminidase Glycoprotein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome sequence of the Australian 1-2 heat-tolerant Newcastle disease virus (NDV) vaccine (master seed stocks) was determined and compared to the sequence of the parent virus from which it had been derived after exposure of the parent stock at 56 degrees C for 30 min. Nucleotide changes were observed at a number of positions with synonymous mutations being greater than those observed for non-synonymous mutations. Sequence data for the HN gene of a parental culture of V4 and two heat-tolerant variants of V4 were obtained. These were compared with the data for the 1-2 viruses and with published sequences for parental V4 and for a number of ND vaccine strains. Sequence analyses did not reveal the ARG 303 deletion in the HN protein, previously claimed to be responsible for the thermostable phenotype. No consistent changes were detected that would indicate involvement of the HN protein in heat resistance. The majority of alterations were observed in the L protein of the virus and it is proposed that these alterations were responsible for the heat-tolerant phenotype of the 1-2 NDV vaccine. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six clinical isolates of influenza A viruses were examined for hemagglutinin receptor specificity and neuraminidase substrate specificity. All of the viral isolates minimally passaged in mammalian cells demonstrated preferential agglutination of human erythrocytes enzymatically modified to contain NeuAc alpha 2,6Gal sequences, with no agglutination of cells bearing NeuAc alpha 2,3Gal sequences. This finding is consistent with the hemagglutination receptor specificity previously demonstrated for laboratory strains of influenza A viruses. The neuraminidase substrate specificities of the clinical isolates examined were also identical to that described for the N2 neuraminidase of recent laboratory strains of human influenza viruses. The H3N2 viruses all displayed the ability to release sialic acid from both alpha 2, 3 and alpha 2, 6 linkages. In addition, two clinical isolates of H1N1 viruses also demonstrated this dual neuraminidase substrate specificity, a characteristic which has not been previously described for the N1 neuraminidase. These results demonstrate that complementary hemagglutinin and neuraminidase specificities are found in recent isolates of both H1N1 and H3N2 influenza viruses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vaccinal and wild strains of Newcastle Disease virus (NDV) were analyzed for cell receptor binding and fusogenic biological properties associated with their HN (hemagglutinin-neuraminidase) and F (fusion protein) surface structures respectively. The evaluation of the biological activities of HN and F was carried out respectively by determination of hemagglutinating titers and hemolysis percentages, using erythrocytes from various animal origins at different pH values. Significant differences in hemagglutination titers for some strains of NDV were detected, when interacting with goose, sheep, guinea-pip and human "O" group erythrocytes at neutral pH. Diversity of hemolysis percentagens was observed between different NDV strains at acid pH. These analysis were developed to evaluate particular aspects of the actual influence of the receptor specifity and pH on the receptor binding and fusogenic processes of Newcastle Disease viruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since 1991, 6 years after the recommendation of universal childhood vaccination against measles, mumps, and rubella (MMR triple vaccine), Switzerland is confronted with a large number of mumps cases affecting both vaccinated and unvaccinated children. Up to 80% of the children suffering from mumps between 1991 and 1995 had previously been vaccinated, the majority with the Rubini vaccine strain. On the basis of a case-control study including 102 patients and 92 controls from the same pediatric population, a study of the humoral immune-response following vaccination with the Rubini vaccine in 6 young adult volunteers, and two different genetic studies, we investigated the complex problem of large scale vaccine failure in Switzerland. We conclude that the recently reported large number of Swiss mumps cases was caused by at least four interacting factors: 1. A vaccine coverage of 90-95% at the age of 2 years is necessary to interrupt mumps wild virus circulation. The nationwide vaccine coverage in Switzerland of some 80% in 27-36 month-old children is too low. 2. Primary vaccine failures (absence of seroconversion or unprotective low levels of neutralizing antibodies), as well as secondary vaccine failures due to the rapid decline of antibodies to mumps virus in our volunteers and controls, seem to be frequent after vaccination with the Rubini strain. 3. Despite its reported Swiss origin, the Rubini strain does not belong to the mumps virus lineages recently circulating in this area but is closely related to American mumps virus strains. 4. Differences in protein structure between the vaccine strain and the circulating wild type strains, and in particular a different neutralization epitope in the hemagglutinin neuraminidase protein, may additionally contribute to the lack of protection in vaccinated individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full-length genome sequences of five virulent and five avirulent strains of Newcastle disease virus isolated between 1998 and 2002 in Victoria and New South Wales, Australia were determined. Comparisons between these strains revealed that coding sequence variability in the haemagglutinin-neuraminidase (HN), matrix (M) and phosphoprotein (P) gene sequences appeared to be more variable than in the fusion (F), nucleocapsid (N) and RNA dependent-RNA replicase (L) genes. Sequence analysis of a number of other isolates made during the recent virulent NDV outbreaks, also identified the presence of a number of variants with altered F gene cleavage sites, which resulted in altered biological properties of those viruses. Quasispecies analysis of a number of field isolates indicated the presence of virulent virus in one particular isolate. Gene sequence analysis of the progenitor virus isolated in 1998 showed very little sequence variation when compared to that of a progenitor-like virus isolated in 2001 demonstrating that in the field. viral genome sequence variation appears to be biologically restricted to that of a consensus sequence. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influenza virus has been a challenge to science due to its ability to withstand new environmental conditions. Taking into account the development of virus sequence databases, computational approaches can be helpful to understand virus behavior over time. Furthermore, they can suggest new directions to deal with influenza. This work presents triplet entropy analysis as a potential phylodynamic tool to quantify nucleotide organization of viral sequences. The application of this measure to segments of hemagglutinin (HA) and neuraminidase (NA) of H1N1 and H3N2 virus subtypes has shown some variability effects along timeline, inferring about virus evolution. Sequences were divided by year and compared for virus subtype (H1N1 and H3N2). The nonparametric Mann-Whitney test was used for comparison between groups. Results show that differentiation in entropy precedes differentiation in GC content for both groups. Considering the HA fragment, both triplet entropy as well as GC concentration show intersection in 2009, year of the recent pandemic. Some conclusions about possible flu evolutionary lines were drawn. © 2013 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A single-tube RT-PCR technique generated a 387 bp or 300 bp cDNA amplicon covering the F-0 cleavage site or the carboxyl (C)-terminus of the HN gene, respectively, of Newcastle disease virus (NDV) strain 1-2. Sequence analysis was used to deduce the amino acid sequences of the cleavage site of F protein and the C-terminus of HN protein, which were then compared with sequences for other NDV strains. The cleavage site of NDV strain 1-2 had a sequence Motif of (112)RKQGRLIG(119), consistent with an avirulent phenotype. Nucleotide sequencing and deduction of amino acids at the C-terminus of HN revealed that strain 1-2 had a 7-amino-acid extension (VEILKDGVREARSSR). This differs from the virulent viruses that caused outbreaks of Newcastle disease in Australia in the 1930s and 1990s, which have HN extensions of 0 and 9 amino acids, respectively. Amino acid sequence analyses of the F and HN genes of strain 1-2 confirmed its avirulent nature and its Australian origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method allowing a clear separation of the different variants of desialylated alpha 1-acid glycoprotein (orosomucoid) has been developed using isoelectric focusing in immobilized pH gradients, supplemented with 8 M urea and 2% v/v 2-mercaptoethanol. Immunoblotting with two antibody-steps afforded high sensitivity and permitted the detection of about 700 pg of alpha 1-acid glycoprotein in a 20 microL plasma sample diluted 1:28 672. A one year old bloodstrain, kept at room temperature, could easily be phenotyped.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by beta-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze cotranslational folding of influenza hemagglutinin in the endoplasmic reticulum of live cells, we used short pulses of radiolabeling followed by immunoprecipitation and analysis with a two-dimensional SDS/polyacrylamide gel system which was nonreducing in the first dimension and reducing in the second. It separated nascent glycopolypeptides of different length and oxidation state. Evidence was obtained for cotranslational disulfide formation, generation of conformational epitopes, N-linked glycosylation, and oligosaccharide-dependent binding of calnexin, a membrane-bound chaperone that binds to incompletely folded glycoproteins via partially glucose-trimmed oligosaccharides. When glycosylation or oligosaccharide trimming was inhibited, the folding pathway was perturbed, suggesting a role for N-linked oligosaccharides and calnexin during translation of hemagglutinin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.