956 resultados para Heat of formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a determination of Delta(f)H(298)(HOO) based upon a negative. ion thermodynamic cycle. The photoelectron spectra of HOO- and DOO- were used to measure the molecular electron affinities (EAs). In a separate experiment, a tandem flowing afterglow-selected ion flow tube (FA-SIFT) was used to measure the forward and reverse rate constants for HOO- + HCdropCH reversible arrow HOOH + HCdropC(-) at 298 K, which gave a value for Delta(acid)H(298)(HOO-H). The experiments yield the following values: EA(HOO) = 1.078 +/- 0.006 eV; T-0((X) over tilde HOO - (A) over tilde HOO) = 0.872 +/- 0.007 eV; EA(DOO) = 1.077 +/- 0.005 eV; T-0((X) over tilde DOO - (A) over tilde DOO) = 0.874 +/- 0.007 eV; Delta(acid)G(298)(HOO-H) = 369.5 +/- 0.4 kcal mol(-1); and Delta(acid)H(298)(HOO-H) = 376.5 +/- 0.4 kcal mol(-1). The acidity/EA thermochemical cycle yields values for the bond enthalpies of DH298(HOO-H) = 87.8 +/- 0.5 kcal mol(-1) and Do(HOO-H) = 86.6 +/- 0.5 kcal mol(-1). We recommend the following values for the heats of formation of the hydroperoxyl radical: Delta(f)H(298)(HOO) = 3.2 +/- 0.5 kcal mol(-1) and Delta(f)H(0)(HOO) = 3.9 +/- 0.5 kcal mol(-1); we recommend that these values supersede those listed in the current NIST-JANAF thermochemical tables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard free energies of formation of zinc aluminate and chromite were determined by measuring the oxygen potential over a solid CuZn alloy, containing 10 at.−% Zn, in equilibrium with ZnO, ZnAl2O4+Al2O3(χ) and ZnCr2O4+Cr2O3, in the temperature range 700–900°C. The oxygen potential was monitored by means of a solid oxide galvanic cell in which a Y2O3 ThO2 pellet was sandwiched between a CaOZrO2 crucible and tube. The temperature dependence of the free energies of formation of the interoxidic compounds can be represented by the equations, The heat of formation of the spinels calculated from the measurements by the “Second Law method” is found to be in good agreement with calorimetrically determined values. Using an empirical correlation for the entropy of formation of cubic spinel phases from oxides with rock-salt and corundum structures and the measured high temperature cation distribution in ZnAl2O4, the entropy of transformation of ZnO from wurtzite to rock-salt structure is evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T = 78 K and T = 390 K. The solid-liquid phase transition of the compound has been observed to be T-fus = (376.567 +/- 0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Delta(fus)H(m) = (26.273 +/- 0.013) kJ (.) mol(-1) and Delta(fus)S(m) = (69.770 +/- 0.035) J (.) K-1 (.) mol(-1). The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Delta(c)U(C14H12O, s) = -(7125.56 +/- 4.62) kJ (.) mol(-1) and Delta(c)H(m)degrees(C14H12O, s) = -(7131.76 +/- 4.62) kJ (.) mol(-1), by means of a homemade precision oxygen-bomb combustion calorimeter at T = (298.15 +/- 0.001) K. The standard molar enthalpy of formation of the compound has been derived, Delta(f)H(m)degrees (C14H12O, s) = -(92.36 +/- 0.97) kJ (.) mol(-1), from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented in this letter is a critical discussion of a recent paper on experimental investigation of the enthalpy, entropy and free energy of formation of gallium nitride (GaN) published in this journal [T.J. Peshek, J.C. Angus, K. Kash, J. Cryst. Growth 311 (2008) 185-189]. It is shown that the experimental technique employed detects neither the equilibrium partial pressure of N-2 corresponding to the equilibrium between Ga and GaN at fixed temperatures nor the equilibrium temperature at constant pressure of N-2. The results of Peshek et al. are discussed in the light of other information on the Gibbs energy of formation available in the literature. Entropy of GaN is derived from heat-capacity measurements. Based on a critical analysis of all thermodynamic information now available, a set of optimized parameters is identified and a table of thermodynamic data for GaN developed from 298.15 to 1400 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three independent studies have been reported on the free energy of formation of NiWO4. Results of these measurements are analyzed by the �third-law� method, using thermal functions for NiWO4 derived from both low and high temperature heat capacity measurements. Values for the standard molar enthalpy of formation of NiWO4 at 298·15 K obtained from �third-law� analysis are compared with direct calorimetric determinations. Only one set of free energy measurements is found to be compatible with calorimetric enthalpies of formation. The selected value for ?f H m 0 (NiWO4, cr, 298·15 K) is the average of the three calorimetric measurements, using both high temperature solution and combustion techniques, and the compatible free energy determination. A new set of evaluated data for NiWO4 is presented.