991 resultados para Hausdorff metric space


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Searching in a dataset for elements that are similar to a given query element is a core problem in applications that manage complex data, and has been aided by metric access methods (MAMs). A growing number of applications require indices that must be built faster and repeatedly, also providing faster response for similarity queries. The increase in the main memory capacity and its lowering costs also motivate using memory-based MAMs. In this paper. we propose the Onion-tree, a new and robust dynamic memory-based MAM that slices the metric space into disjoint subspaces to provide quick indexing of complex data. It introduces three major characteristics: (i) a partitioning method that controls the number of disjoint subspaces generated at each node; (ii) a replacement technique that can change the leaf node pivots in insertion operations; and (iii) range and k-NN extended query algorithms to support the new partitioning method, including a new visit order of the subspaces in k-NN queries. Performance tests with both real-world and synthetic datasets showed that the Onion-tree is very compact. Comparisons of the Onion-tree with the MM-tree and a memory-based version of the Slim-tree showed that the Onion-tree was always faster to build the index. The experiments also showed that the Onion-tree significantly improved range and k-NN query processing performance and was the most efficient MAM, followed by the MM-tree, which in turn outperformed the Slim-tree in almost all the tests. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 54H25, 47H10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coincidence and common fixed point theorems for a class of Suzuki hybrid contractions involving two pairs of single-valued and multivalued maps in a metric space are obtained. In addition, the existence of a common solution for a certain class of functional equations arising in a dynamic programming is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has been partially supported by Grant No. DO 02-275, 16.12.2008, Bulgarian NSF, Ministry of Education and Science.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a metric space with a Borel probability measure, for each integer N, we obtain a probability distribution on N x N distance matrices by considering the distances between pairs of points in a sample consisting of N points chosen independently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)