929 resultados para Harmonic currents


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents double Fourier series based harmonic analysis of DC capacitor current in a three-level neutral point clamped inverter, modulated with sine-triangle PWM. The analytical results are validated experimentally on a 5-kVA three-level inverter prototype. The results of the analysis are used for predicting the power loss in the DC capacitor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Voltage source inverter (VSI) fed six-phase induction motor drives have high 6n +/- 1; n = odd order harmonic currents, due to absence of back emf for these currents. To suppress these harmonic currents, either bulky inductive harmonic filters or complex pulse width modulation (PWM) techniques have to be used. This paper proposes a simple harmonic elimination scheme using capacitor fed inverters, for an asymmetrical six-phase induction motor VSI fed drive. Two three phase inverters fed from a single capacitor is used on the open-end side of the motor, to suppress 6n +/- 1; n = odd order harmonics. A PWM scheme that can suppress the harmonics, as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected. The proposed scheme is verified using MATLAB Simulink simulation at different speeds. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters. Experimental results are also provided to validate the functionality of the proposed controller.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Voltage source inverter (VSI)-fed six-phase induction motor (IM) drives have high 6n +/- 1, n = odd-order harmonic currents. This is because these currents, driven by the corresponding harmonic voltages in the inverter output, are limited only by the stator leakage impedance, as these harmonics are absent in the back electromotive force of the motor. To suppress the harmonic currents, either bulky inductive harmonic filters or complex pulsewidth modulation (PWM) techniques have to be used. This paper proposes a harmonic elimination scheme using switched capacitor filters for a VSI-fed split-phase IM drive. Two 3-phase inverters fed from capacitors are used on the open-end side of the motor to suppress 6n +/- 1, n = odd-order harmonics. A PWM scheme that can suppress the harmonics as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected, and the fundamental power is always drawn from the main inverters. The proposed scheme is verified with a detailed experimental study. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated with sine-triangle pulse-width modulation (SPWM) or conventional space vector pulse-width modulation (CSVPWM) schemes. The analytical results are validated experimentally on a 3-kVA three-level inverter prototype. The capacitor current in an NPC inverter has a periodicity of 120(a similar to) at the fundamental or modulation frequency. Hence, this current contains third-harmonic and triplen-frequency components, apart from switching frequency components. The harmonic components vary with modulation index and power factor for both PWM schemes. The third harmonic current decreases with increase in modulation index and also decreases with increase in power factor in case of both PWM methods. In general, the third harmonic content is higher with SPWM than with CSVPWM at a given operating condition. Also, power loss and voltage ripple in the DC capacitor are estimated for both the schemes using the current harmonic spectrum and equivalent series resistance (ESR) of the capacitor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important alteration of the equivalent loads profile has been observed in the electrical energy distribution systems, for the last years. Such fact is due to the significant increment of the electronic processors of electric energy that, in general, behave as nonlinear loads, generating harmonic distortions in the currents and voltages along the electric network. The effects of these nonlinear loads, even if they are concentrated in specific sections of the network, are present along the branch circuits, affecting the behavior of the entire electric network. For the evaluation of this phenomenon it is necessary the analysis of the harmonic currents flow and the understanding of the causes and effects of the consequent voltage harmonic distortions. The usual tools for calculation the harmonic flow consider one-line equivalent networks, balanced and symmetrical systems. Therefore, they are not tools appropriate for analysis of the operation and the influence/interaction of mitigation elements. In this context, this work proposes the development of a computational tool for the analysis of the three-phase harmonic propagation using Norton modified models and considering the real nature of unbalanced electric systems operation. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last few years, there has been an increased attention paid on the developments of DC microgrids (DCMGs) and their applications. For economical and more flexible wind power generation, doubly fed induction generator (DFIG) is regarded as a most commonly used generator in wind farms. This paper presents a configuration and operation method for a DCMG connected with DFIGs, in which the controller of the DFIG is designed for maximum power point tracking (MPPT). The generation of harmonics and their effects on the generator in this configuration are analyzed and a harmonic compensation method is proposed. Furthermore, the simulation results are presented to show that the DFIG can be operated effectively in DCMGs and harmonic currents can be reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The operation of thyristor-controlled static VAR compensators (SVCs) at various conduction angles can be used advantageously to meet the unablanced reactive power demands in a system. However, such operation introduces harmonic currents into the AC system. This paper presents an algorithm to evaluate an optimum combination of the phase-wise reactive power generations from SVC and balanced reactive power supply from the AC system, based on the defined performance indices, namely, the telephone influence factor (TIF), the total harmonic current factor (IT) and the distortion factor (D). Results of the studies conducted on a typical distribution system are presented and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Active Front-End (AFE) converter operation produces electrically noisy DC bus on common mode basis. This results in higher ground current as compared to three phase diode bridge rectifier. Filter topologies for DC bus have to deal problems with switching frequency and harmonic currents. The proposed filter approach reduces common mode voltage and circulates third harmonic current within the system, resulting in minimal ground current injection. The filtering technique, its constrains and design to attenuate common mode voltage and eliminate lower order harmonics injection to ground is discussed. The experimental results for operation of the converter with both SPWM and CSVPWM are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta contribuições para algoritmos de controle utilizados em filtros ativos e híbridos conectados em redes elétricas trifásicas a 3 ou a 4 fios. Em relação aos algoritmos de controle para filtros ativos, a contribuição consiste em estender o conceito da filtragem harmônica seletiva para compensação de correntes harmônicas e desequilibradas em uma rede trifásica a 4 fios. Esses algoritmos derivam dos conceitos utilizados na teoria da potência instantânea (teoria pq), em conjunto com um circuito de sincronismo PLL. É importante ressaltar que estes algoritmos não utilizam as correntes consumidas pelas cargas, ou seja, apenas as tensões no ponto da rede onde o filtro está conectado são utilizadas para determinação das correntes harmônicas de referência. Apenas as correntes na saída do conversor são utilizadas como realimentação do controle PWM. Estes algoritmos também foram utilizados no filtro híbrido para compensação de correntes harmônicas em uma rede trifásica a 3 fios. Por fim foi feito uma alteração nesses algoritmos de controle que permite eliminar as correntes utilizadas na realimentação do controle PWM. Resultados de simulação são apresentados com objetivo de observar o comportamento desses algoritmos tanto no filtro ativo quanto no híbrido nas condições mencionadas.