11 resultados para Hamiltoniens
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn.
Resumo:
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation.
Resumo:
Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.
Resumo:
Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour l'action du groupe des difféomorphismes hamiltoniens sur l'espace des structures kählériennes généralisées de type symplectique. En effet, il est bien connu que l'application moment pour la restriction de cette action aux structures kählériennes s'identifie à la courbure scalaire riemannienne. On se limite à une certaine classe de structure kählériennes généralisées sur les variétés toriques notée $DGK_{\omega}^{\mathbb{T}}(M)$ que l'on reconnaît comme étant classifiées par la donnée d'une matrice antisymétrique $C$ et d'une fonction réelle strictement convexe $\tau$ (ayant un comportement adéquat au voisinage de la frontière du polytope moment). Ce point de vue rend évident le fait que toute structure kählérienne torique peut être déformée en un élément non kählérien de $DGK_{\omega}^{\mathbb{T}}(M)$, et on note que cette déformation à lieu le long d'une des classes que R. Goto a démontré comme étant libre d'obstruction. On identifie des conditions suffisantes sur une paire $(\tau,C)$ pour qu'elle donne lieu à un élément de $DGK_{\omega}^{\mathbb{T}}(M)$ et on montre qu'en dimension 4, ces conditions sont également nécessaires. Suivant l'adage «l'application moment est la courbure» mentionné ci-haut, des formules pour des notions de «courbure scalaire hermitienne généralisée» et de «courbure scalaire riemannienne généralisée» (en dimension 4) sont obtenues en termes de la fonction $\tau$. Enfin, une expression de la courbure scalaire riemannienne généralisée en termes de la structure bihermitienne sous-jacente est dégagée en dimension 4. Lorsque comparée avec le résultat des physiciens Coimbra et al., notre formule suggère un choix canonique pour le dilaton de leur théorie.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.
Resumo:
Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.