Structures quantiques de certaines sous-variétés lagrangiennes non-monotones


Autoria(s): Ngô, Fabien
Contribuinte(s)

Cornea, Octavian

Data(s)

21/01/2011

31/12/1969

21/01/2011

02/12/2010

01/06/2010

Resumo

Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn.

Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this relative setting they deformed the boundary operator of the Morse complex as well as the intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product. The main goal of this dissertation is to generalize their construction to a larger class of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds, i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some choices, but in a way irrelevant for the applications we have in mind. In the almost monotone case, we are mainly interested in displaceability, uniruling and ernegy estimates for hamiltonian diffeomorphsims. Finally, we end by an application, that combine the two approaches, concerning the dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.

Identificador

http://hdl.handle.net/1866/4526

Idioma(s)

fr

Palavras-Chave #Topologie symplectique #Symplectic topology #Sous-variétés lagrangiennes #Lagrangian submanifold #Homologie quantique #Quantum homology #Homologie des perles #Pearl homology #capacité symplectique #symplectic capacity #Mathematics / Mathématiques (UMI : 0405)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation