987 resultados para Hahn-Banach theorem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lecture notes in LaTex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Muitos problemas de Dinâmica em Economia se encaixam dentro de uma estrutura de modelos de decisão seqüencial, sendo resolvidos recursivamente. Programação Dinâmica uma técnica de otimização condicionada que se encarrega de solucionar problemas desse tipo. Esse trabalho tem como objetivo apresentar uma resenha dos principais resultados teóricos em Programação Dinâmica. Os métodos da Programação Dinâmica são válidos tanto para problemas determinísticos como para os que incorporam variável incerteza. esperada objetividade de uma dissertação de Mestrado, no entanto, nos impediu de extender análise, deixando assim de considerar explicitamente neste trabalho modelos estocásticos, que teria enriquecido bastante parte destinada aplicações Teor ia Econômica. No capítulo desenvolvemos instrumental matemático, introduzindo uma série de conceitos resultados sobre os quais se constrói análise nos capítulos subsequentes. Ilustramos tais conceitos com exemplos que seguem um certo encadeamento. Nas seções 1.1 1.2 apresentamos as idéias propriedades de espaços métricos espaços vetoriais. Na seção 1.3, prosseguimos com tópicos em análise funcional, introduzindo noção de norma de um vetor de espaços de Banach. seção 1.4 entra com idéia de contração, Teor ema do Ponto Fixo de Banach e o teor ema de Blackwell. O Teorema de Hahn-Banach, tanto na sua forma de extensão quanto na sua forma geométrica, preocupação na seção 1.5. Em particular, forma geométrica desse teorema seus corolários são importantes para análise conduzida no terceiro capítulo. Por fim, na seção 6, apresentamos Teorema do Máximo. Ao final deste capítulo, como também dos demais, procuramos sempre citar as fontes consultadas bem como extensões ou tratamentos alternativos ao contido no texto. No capítulo II apresentamos os resultados métodos da Programação Dinâmica em si seção 2.1 cuida da base da teoria, com Princípio da Otimal idade de Eellman e a derivação de um algoritmo de Programação Dinâmica. Na seção 2.2 mostramos que esse algoritmo converge para função valor ótima de um problema de horizonte infinito, sendo que esta última satisfaz chamada Equação de Bellman. seção seguinte se preocupa em fornecer caracterizaçBes para função valor mencionada acima, mostrando-se propriedades acerca de sua monotonicidade concavidade. seção 2.4 trata da questão da diferenciabi idade da função valor, que permite se obter alguns resultados de estática Cou dinâmica} comparativa partir da Equação de Bellman. Finalmente, na seção 2.5 apresentamos uma primeira aplicação Teoria Econômica, através de um modelo de crescimento econômico ótimo. No capítulo III introduzimos uma outra técnica de otimização Programação Convexa- mostramos dificuldade em se tentar estabelecer alguma relação de dominância entre Programação Dinâmica Programação Convexa. Na seção 3.2 "apresentamos os Teoremas de Separação, dos quais nos utilizamos na seção seguinte para demonstrar existência de Multiplicadores de Lagrange no problema geral da Programação Convexa. No final desta seção dizemos porque não podemos inferir que em espaços de dimensão infinita Programação Convexa não pode ser aplicada, ao contrário da Programação Dinâmica, que evidenciaria uma dominancia dessa última técnica nesses espaços. Finalmente, capítulo IV destinado uma aplicação imediata das técnicas desenvolvidas principalmente no segundo capítulo. Com auxílio dessas técnicas resolve-se um problema de maximização intertemporal, faz-se uma comparação dos resultados obtidos através de uma solução cooperativa de uma solução não-cooperativa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questa tesi presenta alcuni aspetti dell'analisi convessa, in spazi vettoriali topologici, indirizzati allo studio di problemi generali di minimizzazione. Dai risultati geometrici dei teoremi di Hahn-Banach, attraverso la descrizione di proprietà fondamentali delle funzioni convesse e del sottodifferenziale, viene descritta la dualità di Fenchel-Moreau, e poi applicata a problemi generali di Ottimizzazione convessa, sotto forma prima di problema primale-duale, e poi come rapporto tra i punti di sella della Lagrangiana e le soluzioni della funzione da minimizzare.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hartman-Grobman Theorem of linearization is extended to families of dynamical systems in a Banach space X, depending continuously on parameters. We prove that the conjugacy also changes continuously. The cases of nonlinear maps and flows are considered, and both in global and local versions, but global in the parameters. To use a special version of the Banach-Caccioppoli Theorem we introduce equivalent norms on X depending on the parameters. The functional setting is suitable for applications to some nonlinear evolution partial differential equations like the nonlinear beam equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In his paper [1], Bates investigates the existence of nonlinear, but highly smooth, surjective operators between various classes of Banach spaces. Modifying his basic method, he obtains the following striking results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is proved that a Banach space X has the Lyapunov property if its subspace Y and the quotient space X/Y have it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.