996 resultados para HGTE QUANTUM-WELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical study on the electron tunneling through a single barrier created in a two-dimensional electron gas (2DEG) and quantum spin Hall (QSH) bar in a HgTe/CdTe quantum well with inverted band structures. For the 2DEG, the transmission shows the Fabry-Perot resonances for the interband tunneling process and is blocked when the incident energy lies in the bulk gap of the barrier region. For the QSH bar, the transmission gap is reduced to the edge gap caused by the finite size effect. Instead, transmission dips appear due to the interference between the edge states and the bound states originated from the bulk states. Such a Fano-like resonance leads to a sharp dip in the transmission which can be observed experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anomalous alternating magnetoresistivity in HgTe quantum wells with thicknesses of 5.8 and 8.3 nm, i.e., near the transition from the direct band spectrum to an inverted spectrum, has been revealed and analyzed. It has been shown that the revealed anomalous alternating magnetoresistivity in wells with an inverted spectrum is well described by the theory developed by S.V. Iordanskii et al. [JETP Lett. 60, 206 (1994)] and W. Knap et al. [Phys. Rev. B 53, 3912 (1996)]. A detailed comparison of the experimental data with the theory indicates the presence of only the cubic term in the spin splitting of the electronic spectrum. The applicability conditions of the mentioned theory are not satisfied in a well with a direct gap and, for this reason, such a certain conclusion is impossible. The results indicate the existence of a strong spin-orbit interaction in symmetric HgTe quantum wells near the topological transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A metal-insulator transition in a two-dimensional semimetal based on HgTe quantum wells is discovered. The transition is induced by a magnetic field applied parallel to the plane of the quantum well. The threshold behavior of the activation energy as a function of the magnetic-field strength and an abrupt reduction of the Hall resistance at the onset of the transition suggest that the observed effect originates from the formation of an excitonic insulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature electroluminescence (EL) is observed in n-type modulation-doped AlGaAs/InGaAs/GaAs quantum well samples by applying a positive voltage between the semitransparent Au gate and alloyed Au–Ge Ohmic contacts made on the top surface of the samples. We attribute impact ionization in the InGaAs QW to the observed EL from the samples. A redshift in the EL spectra is observed with increasing gate bias. The observed redshift in the EL spectra is attributed to the band gap renormalization due to many-body effects and quantum-confined Stark effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the photoemission from quantum wells (QWs) in ultrathin films (UFs) and quantum well wires (QWWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined Ill-V compounds form the special cases of our generalized analysis. The photoemission has also been studied for quantum confined II-VI, n-GaP, n-Ge, PtSb2, stressed materials and Bismuth on the basis of respective dispersion relations. It has been found taking quantum confined CdGeAS(2), InAs, InSb, CdS, GaP, Ge, PtSb2, stressed n-InSb and B1 that the photoemission exhibits quantized variations with the incident photon energy, changing electron concentration and film thickness, respectively, for all types of quantum confinement. The photoemission from CNs exhibits oscillatory dependence with increasing normalized electron degeneracy and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of photoemission from non-degenerate semiconductors and parabolic energy bands, leading to the compatibility test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present photoluminescence and reflectance spectra of GaAs/Al-x Ga-1-x As quantum wells in a magnetic field for the Faraday geometry. The photoluminescence peaks recorded are among the most intense and narrow reported to date. This has allowed us to study the behavior of closely spaced bound exciton lines under a magnetic field. Several new features including magnetic field induced splitting of the bound exciton emission peaks are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoluminescence study of Fermi-edge singularity (FES) in modulation-doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs quantum well (QW) heterostructures is presented. In the above QW structures the optical transitions between n = 1 and n = 2 electronic subband to the n = 1 heavy hole subband (E-11 and E-21 transitions, respectively) are observed with FES appearing as a lower energy shoulder to the E-21 transition. The observed FES is attributed to the Fermi wave vector in the first electronic subband under the conditions of population of the second electronic subband. The FES appears at about 10 meV below E-21 transition around 4.2 K. Initially it gets stronger with increasing temperature and becomes a distinct peak at about 20 K. Further increase in temperature quenches FES and reaches the base line at around 40 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.