619 resultados para Guanidine alkaloids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactivity-guided fractionation of a methanolic CHCl 3 extract of the leaves of Pterogyne nitens afforded the known guanidine alkaloid pterogynidine [2] and three new guanidine alkaloids, nitensidines A [3], B [4], and C [5], all of which exhibited selective activity towards the DNA repair-deficient yeast mutant RS 321 (IC 12=9.3-20.0 μg/ml); 3,4, and 5 were moderately cytotoxic to CHO Aux B 1 cells (IC 50=8.5-13.0 μg/ml).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitensidine A is a guanidine alkaloid isolated from Pterogyne nitens, a common plant in South America. To gain insight into the biological activity of P. nitens-produced compounds, we examined herein their biological effects on osteoclasts, multinucleated giant cells that regulate bone metabolism by resorbing bone. Among four guanidine alkaloids (i.e., galegine, nitensidine A, pterogynidine, and pterogynine), nitensidine A and pterogynine exhibited anti-osteoclastic effects at 10 μM by reducing the number of osteoclasts on the culture plate whereas galegine and pterogynidine did not. The anti-osteoclastic activities of nitensidine A and pterogynine were exerted in a concentration-dependent manner, whereas nitensidine A exhibited an approximate threefold stronger effect than pterogynine (IC50 values: nitensidine A, 0.93 ± 0.024 μM; pterogynine, 2.7 ± 0.40 μM). In the present study, the anti-osteoclastic effects of two synthetic nitensidine A derivatives (nitensidine AT and AU) were also examined to gain insight into the structural features of nitensidine A that exert an anti-osteoclastic effect. The anti-osteoclastic effect of nitensidine A was greatly reduced by substituting the imino nitrogen atom in nitensidine A with sulfur or oxygen. According to the differences in chemical structures and anti-osteoclastic effects of the four guanidine alkaloids and the two synthetic nitensidine A derivatives, it is suggested that the number, binding site, and polymerization degree of isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their anti-osteoclastic effects. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibited some level of cytotoxicity against both CCRF-CEM and CEM/ADR5000 cells. In ATPase assays, three of the four guanidine alkaloids were found to stimulate the ATPase activity of ABCB1. Notably, nitensidine A was clearly found to stimulate the ATPase activity of ABCB1 as strongly as the control drug, verapamil. Furthermore, the cytotoxic effect of nitensidine A on CEM/ADR5000 cells was synergistically enhanced by verapamil. Nitensidine A inhibited the extrusion of calcein by ABCB1. In the present study, the possibility of interaction between ABCB1 and two synthetic nitensidine A analogs (nitensidine AT and AU) were examined to gain insight into the mechanism by which nitensidine A stimulates the ATPase activity of ABCB1. The ABCB1-dependent ATPase activity stimulated by nitensidine A was greatly reduced by substituting sulfur (S) or oxygen (O) for the imino nitrogen atom (N) in nitensidine A. Molecular docking studies on human ABCB1 showed that, guanidine alkaloids from P. nitens dock to the same binding pocket as verapamil. Nitensidine A and its analogs exhibit similar binding energies to verapamil. Taken together, this research clearly indicates that nitensidine A is a novel substrate for ABCB1. The present results also suggest that the number, binding site, and polymerization degree of the isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their stimulation of ABCB1's ATPase activity. © 2013 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioactivity-guided fractionation of several bioactive extracts obtained from Cerrado and Atlantic Forest plant species led to the isolation of potent DNA-damaging piperidine 1-5 and guanidine alkaloids 6-9 from Cassia leptophylla and Pterogyne nitens respectively, two common Leguminosae from Atlantic Forest. By means of biotechnological approach on Maytenus aquifolium, a species from Cerrado, moderate DNA-damaging sesquiterpene pyridine alkaloid 10-11 was isolated. Bioassay-guided fractionation on Casearia sylvestris, a medicinal plant species found in Cerrado and Atlantic Forest, led to the isolation of clerodane diterpenes 12-13 which showed effect on DNA. In addition, we have reported several interesting potent antifungal iridoids: 1β-hydroxy-dihydrocornin (14), 1α-hydroxy-dihydrocornin (15), α-gardiol (16), β-gardiol (17), plumericin (18), isoplumericin (19), 11-O-trans-caffeoylteucrein (20); ester derivative: 2-methyl-4-hydroxy-butyl-caffeoate (21), amide N-[7-(3'.4'-methylenedioxyphenyl)-2Z, 4Z-heptadienoyl] pyrrolidine (22) and triterpene viburgenin (23).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of our program of bioprospecting for novel antitumor drug prototypes, twenty extracts and fractions obtained from Pterogyne nitens Tul. (Fabaceae, Caesalpinioideae) were screened for antiproliferative activity against B16F10 murine melanoma cells, by the MTT colorimetric assay. The strongest activity was found in EtOAc fractions from the flowers (IC50 = 0.35 µg/mL), fruits (IC50 = 0.34 µg/mL), leaves (IC50 = 0.33 µg/mL) and stems (IC50 = 0.29 µg/mL). Analysis by TLC and HPLC-DAD showed the presence of guanidine alkaloids, flavones and flavonols in the bioactive samples. Additionally, a phytochemical study of the EtOAc fraction of the stems afforded quercetin (1) and isoquercitrin (2), two flavonols with antiproliferative activity previously described in the literature. On the basis of these results, it can be concluded that P. nitens inhibits the growth of melanoma cells in vitro. Further investigations will be needed to assess the usefulness of the samples under study for the treatment of neoplasms and to characterize other bioactive compounds. Keywords: antiproliferative; Pterogyne nitens; Caesalpinioideae; melanoma; flavonoids; Fabaceae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of CH6N3+ C6H6AsO3- . CH5N3 . 2H2O, the phenylarsonate anion gives two R2/2(8) cyclic hydrogen-bonding interactions, one with a guanidinium cation, the other with a guanidine molecule. The anions are also bridged by the water molecules, one of which completes a cyclic R3/5(9) hydrogen-bonding association with the guanidinum cation, conjoint with one of the three R^2^~2~(8) associations about that ion, as well as forming an R1/2(6) cyclic association with the guanidine molecule. The result is a three-dimensional framework structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new acylated pteridine alkaloids, duramidines A-D, two new acylated thymidine alkaloids, leptoclinidines A and B, two new 1-acylglyceryl-3-(O- carboxyhydroxymethylcholine) alkaloids, durabetaines A and B, three new 1,3-dimethyl-5-methylsulfanylimidazole alkaloids, leptoclinidamines D-F, and the known alkaloids leptoclinidamines B and C and 6-bromo-1H-indolo-3-yl-oxoacetic acid methyl ester were isolated from the Australian ascidian Leptoclinides durus. The duramidines are the first pteridine alkaloids, possessing a three carbon side chain esterified at C-1′ with a 4-hydroxy-2′- methoxycinnamic acid, and are either hydroxylated or sulfated at C-2′. The leptoclinidines are the first 3′-indole-3-carboxylic acid ester derivatives of thymidine to be reported in the literature. The durabetaines are the first glyceryl-3-(O-carboxyhydroxymethylcholine) alkaloids to be reported from an animal source and are also the only known derivatives from this class to be acylated with aromatic carboxylic acids. MS and NMR data analysis established the structures of the new compounds. All compounds were shown to be inactive when tested for cytotoxic activity against prostate (LNCaP) and breast (MDA-MB-231) cancer cell lines and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus.