979 resultados para Geometry, Non-Euclidean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove end point estimate for Radon transform of radial functions on affine Grasamannian and real hyperbolic space. We also discuss analogs of these results on the sphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical geometry (or idealized perceptual space), the space of the mathematical science of physical nature (in which science, not only raw perception has a word) and the abstract spaces of mathematics (free creations of the mathematical mind), each of them with its peculiar geometrical structure. Perceptual space is proto-Euclidean and the space of physical geometry Euclidean, but mathematical physics, Husserl allowed, may find it convenient to represent physical space with a non-Euclidean structure. Mathematical spaces, on their turn, can be endowed, he thinks, with any geometry mathematicians may find interesting. Many other related questions are addressed here, in particular those concerning the a priori or a posteriori character of the many geometric features of perceptual space (bearing in mind that there are at least two different notions of a priori in Husserl, which we may call the conceptual and the transcendental a priori). I conclude with an overview of Weyl's ideas on the matter, since his philosophical conceptions are often traceable back to his former master, Husserl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)