949 resultados para Geometria bidimensional cartesiana
Resumo:
Os eventos de fissão nuclear, resultados da interação dos nêutrons com os núcleos dos átomos do meio hospedeiro multiplicativo, não estão presentes em algumas regiões dos reatores nucleares, e.g., moderador, refletor, e meios estruturais. Nesses domínios espaciais não há geração de potência nuclear térmica e, além disso, comprometem a eficiência computacional dos cálculos globais de reatores nucleares. Propomos nesta tese uma estratégia visando a aumentar a eficiência computacional dessas simulações eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas (baffle e refletor) em torno do núcleo ativo. Apresentamos algumas modelagens e discutimos a eficiência da aplicação dessas condições de contorno aproximadas tipo albedo para uma e duas regiões nãomultiplicativas, na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. A denominação Albedo, palavra de origem latina para alvura, foi originalmente definida como a fração da luz incidente que é refletida difusamente por uma superfície. Esta denominação latina permaneceu como o termo científico usual em astronomia e, nesta tese, este conceito é estendido para reflexão de nêutrons. Estas condições de contorno tipo albedo SN não-convencional substituem aproximadamente as regiões de baffle e refletor no em torno do núcleo ativo do reator, desprezando os termos de fuga transversal no interior dessas regiões. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta tese, são exatas. Por eficiência computacional entende-se a análise da precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos considerando dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.
Resumo:
Como eventos de fissão induzida por nêutrons não ocorrem nas regiões nãomultiplicativas de reatores nucleares, e.g., moderador, refletor, e meios estruturais, essas regiões não geram potência e a eficiência computacional dos cálculos globais de reatores nucleares pode portanto ser aumentada eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas em torno do núcleo ativo. É discutida nesta dissertação a eficiência computacional de condições de contorno aproximadas tipo albedo na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. Albedo, palavra de origem latina para alvura, foi originalmente definido como a fração da luz incidente que é refletida difusamente por uma superfície. Esta palavra latina permaneceu como o termo científico usual em astronomia e nesta dissertação este conceito é estendido para reflexão de nêutrons. Este albedo SN nãoconvencional substitui aproximadamente a região refletora em torno do núcleo ativo do reator, pois os termos de fuga transversal são desprezados no interior do refletor. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta dissertação, são exatas. Por eficiência computacional entende-se analisar a precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos para dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.
Resumo:
Neste trabalho, foi construída uma forma integral para a solução das equações de transporte em uma, duas e três dimensões, considerando o núcleo de espalhamento de Klein-Nishina, espalhamento isotrópico e o núcleo de espalhamento de Rutherford, respectivamente, seguindo a mesma idéia proposta em trabalhos recentes, nos quais foi construída uma solução para a equação de transporte de nêutrons em geometria cartesiana, usando derivada fracionária. A metodologia consiste em igualar a derivada fracionária do fluxo angular à equação integral, determinar a ordem da derivada fracionária comparando o núcleo da equação integral com o da definição de Riemann-Liouville. Essa formulação foi aplicada ao cálculo de dose absorvida. São apresentadas soluções geradas a partir do emprego do método da derivada fracionária e comparadas a resultados disponíveis na literatura.
Resumo:
A dimensão das questões curriculares, no ensino superior universitário, transcende, cada vez mais, os tradicionais, mas de crescente complexidade, campos do ensino e da aprendizagem. Na Universidade, para além de se ensinar e aprender, também se vive. Vive-se um dos períodos mais marcantes das vidas de cada um: a época em que se é jovem adulto. A uma organização curricular, institucionalmente ortodoxa, baseada na rigidez dos planos de estudo, dos horários e locais de trabalho e dos conhecimentos a adquirir, contrapõe-se, cada vez mais, uma procura personalizada de produtos educativos personalizados, flexíveis e adaptáveis às características, necessidades e contextos de quem os procura. O design curricular, no âmbito universitário, deverá caminhar no sentido da decrescente rigidez organizacional e da crescente flexibilidade (conferindo maior possibilidade de escolha do que se quer aprender) nunca abdicando das necessárias condições uniformizadas de certificação, que se constituem uma condição indispensável para o reconhecimento académico, profissional e social da formação recebida e/ou construída na Universidade. A presente comunicação pretende dar um contributo para a necessária reflexão que urge fazer sobre a missão da Universidade dos nossos dias.
Resumo:
Simulações Numéricas são executadas em um código numérico de alta precisão resolvendo as equações de Navier-Stokes e da continuidade para regimes de escoamento incompressíveis num contexto da turbulência bidimensional. Este código utiliza um esquema compacto de diferenças finitas de sexta ordem na aproximação das derivadas espaciais. As derivadas temporais são calculadas usando o esquema de Runge-Kuta de terceeira ordem com baixo armazenamento. Tal código numérico fornece uma representação melhorada para uma grande faixa de escalas de comprimento e de tempo. As técnicas dos contornos imersos acopladas ao método dos contornos virtuais permitem modelar escoamentos não-estacionários sobre geometrrias complexas, usando simplesmente uma malha Cartesiana uniforme. Por meio de procedimentos de aproximação/interpolação, as técnicas dos contornos imersos (aproximação Gaussiana, interpolação bilinear e redistribuição Gaussiana), permitem a representação do corpo sólido no interior do campo de escoamento, com a superfície não coincidindo com a malha computacional. O método dos contornos virtuais, proposto originalmente por Peskin, consiste, basicamente, na imposição na superfície e/ou no interior do corpo, de um termo de força temporal acrescentando às equações do momento. A aplicação deste campo de força local leva o fluido ao repouso na superfície do corpo, permitindo obter as condições de contorno de não-deslizamento e de não penetração de fluido na parede. A análise das oscilações induzidas no escoamento-contorno pelo processo de desprendimento de vórtices na esteira do cilindro circular e de geometria retangulares na incidência, para números de Reybolds variando de 40 a 400, confirma a eficiência computacional e a aplicabilidade das técncias implementadas.
Resumo:
Este trabalho apresenta simulações físicas de correntes de densidade não conservativas em canal bidimensional e tridimensional. Primeiramente, foram desenvolvidas a seleção e caracterização de materiais granulares, bem como a classificação de tamanhos de grãos adequados capazes de simular tais correntes. Foram desenvolvidas também, metodologias de ensaios, abordando os detalhes como a preparação de materiais, equipamentos e instalações. Como resultados foram selecionados cinco materiais para as simulações, a areia (0,125mm a 0,063mm); os calcários B e C (0,125mm a 0,063mm) e os carvões 205 e carvão 207 (0,354mm a 0,063mm). Através de ensaios por fluxo contínuo de material, caracterizado por uma injeção de mistura durante um período de tempo, foram estudados as características geométricas, dinâmicas e os padrões de deposição destas correntes. Nestes ensaios foram variados o material granular e seu tamanho de grão utilizado na mistura e a concentração da mistura. Observou-se que: a velocidade da corrente aumenta à medida que a massa específica/concentração da mistura aumenta; que à medida que o tamanho do grão diminui, para um mesmo material com a mesma massa específica na mistura, a velocidade aumenta; a altura da cabeça da corrente aumenta à medida que a massa específica/concentração da mistura diminui; a distribuição dos volumes de depósitos apresentou uma tendência geral, com acúmulo de material, da ordem de 90%, nas regiões mais proximais do canal (0-75cm) e acúmulo de material, da ordem de 5%, canal nas regiões mais distais do canal (150-250cm). A distribuição dos grãos indica que o tamanho dos grãos vai diminuindo com a distância, estando as frações maiores (correspondentes a areia fina) presentes nas zonas mais proximais do canal (até 50cm) e com os grãos mais finos chegando até as regiões mais distais do canal (250cm). Foi avaliada, também, a influência da vazão inicial e do volume total de material sobre o desenvolvimento e depósitos das correntes de densidade não conservativas. As características medidas foram a evolução e as velocidades da corrente, além da espessura, granulometria e formas de fundo dos depósitos gerados. Como resultados foi verificado que a velocidade de avanço, espessuras, formas de fundo e distribuição granulométricas do material estão intimamente mais ligada à vazão de entrada do que ao volume total. Nota-se que, a vazão condiciona a tendência geral da evolução da corrente (padrão de variação da velocidade e da deposição) e as formas de fundo, enquanto que o volume de material injetado é responsável apenas pela magnitude dessas variações.
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.
Resumo:
Os métodos numéricos de Elementos Finitos e Equação Integral são comumente utilizados para investigações eletromagnéticas na Geofísica, e, para essas modelagens é importante saber qual algoritmo é mais rápido num certo modelo geofísico. Neste trabalho são feitas comparações nos resultados de tempo computacional desses dois métodos em modelos bidimensionais com heterogeneidades condutivas num semiespaço resistivo energizados por uma linha infinita de corrente (com 1000Hz de freqüência) e situada na superfície paralelamente ao "strike" das heterogeneidades. Após a validação e otimização dos programas analisamos o comportamento dos tempos de processamento nos modelos de corpos retangulares variandose o tamanho, o número e a inclinação dos corpos. Além disso, investigamos nesses métodos as etapas que demandam maior custo computacional. Em nossos modelos, o método de Elementos Finitos foi mais vantajoso que o de Equação Integral, com exceção na situação de corpos com baixa condutividade ou com geometria inclinada.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A Geometria Projetiva é o ramo da matemática que estuda as propriedades geométricas invariantes de uma projeção. Ela surge no século XVII da tentativa de compreender matematicamente as técnicas de desenho em perspectiva empregadas pelos artistas da Renascença. Por outro lado, a Geometria Descritiva também se utiliza de projeções para representar objetos tridimensional em um plano bidimensional. Desta forma, a Geometria Projetiva dialoga com o desenho artístico através das regras de perspectiva, e com o desenho técnico através da Geometria Descritiva. A partir das relações entre estes três campos do conhecimento, elaboramos uma proposta didática para o ensino da Geometria Projetiva a alunos do 9 ∘ ano do ensino fundamental. Este trabalho apresenta esta proposta e busca embasá-la matematicamente, relacionando-a aos principais fundamentos da Geometria Projetiva.
Resumo:
Resumen: Luego de exponer las posibilidades filosóficas que las geometrías abren a las orientaciones de nuevos espacios, el artículo considera los procedimientos euclidianos y la conexión con las geometrías no-euclidianas. Hay muchas posiciones acerca de las bases filosóficas de las distintas geometrías. Hay además formulaciones muy importantes, desde la gnoseología a la ontología, respecto de las extensiones métricas de la alta geometría.
Resumo:
Bibliografia da Impressão Régis informa que "Publicada pela primeira vez em Paris em 1794, a obra logo se tornou clássica. A edição do Rio de Janeiro, destinada aos alunos da Academia Militar, apresenta treze estampas com figuras geométricas , as primeiras a serem gravadas na Impressão Régia; não trazem assinatura, porém devem ter sido feiras por Romão Elói de Almeida ou por Paulo dos Santos Ferreira Souto, artistas da Tipografia do Arco do Cego, de Lisboa, recém-chegados ao Brasil por Frei José Mariano da Conceição Velloso..." Texto escurecidos pela acidez com marcas de cupim.
Resumo:
Elementos de geometria, bem como o Breve tratado de geometria spherica, do mesmo autor, era um livro-texto para as escolas do Brasil e de Portugal, sendo reimpresso muitas vezes. A ordem de imprimir é assinada por José Bonifácio de Andrada, Secretário da Academia de Sciencias.