Termodinâmica de um conjunto de partículas em um bilhar bidimensional dependente do tempo: um gás bidimensional simplificado
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
14/04/2016
14/04/2016
26/01/2016
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Pós-graduação em Física - IGCE O presente trabalho de pesquisa foi motivado por um modelo de bilhar unidimensional denominado de Bouncer. O modelo consiste em uma partícula movendo-se sob ação de um campo gravitacional e que colide com um plataforma móvel. Apresentaremos suas características e propriedades que motivaram a pesquisa para um bilhar bidimensional com geometria da fronteira do tipo ovóide. Os objetivos desta dissertação são de estudar as propriedades estatísticas e termodinâmicas de um bilhar ovóide com dependência temporal na fronteira em um regime dissipativo em relação as colisões entre a partícula e a fronteira. Para o bilhar bidimensional, apresentaremos as propriedades desenvolvidas inspiradas no modelo unidimensional. Desenvolvemos as expressões para determinar os expoentes críticos do sistema em relação a velocidade quadrática média, o número de colisões em função do tempo e a conexão com a termodinâmica através do teorema de equipartição de energia. Nesta dissertação apresentamos um forma alternativa de fazer a conexão com a termodinâmica através da lei de Fourier para a condução do calor, para bilhares bidimensionais e de determinar o número de colisões em função do tempo. This work was motivated by a one-dimensional model called as bouncer. The model consists of a particle moving under the action of a gravitational field and experiences collisions with a periodic moving platform. We describe shortly its dynamical properties and move forward to a two-dimensional billiard problem of the oval-like shape. The objective of this dissertation is to study some statistical and thermodynamical properties of an oval-like shaped billiard whose boundary moves in time. Upon collision with the boundary, the particle has a fractional lose of energy produced by inelastic collisions. We then obtain equations that describe the dynamics at both sort and large time. By the use of equipartition theorem, we make a connection of the dynamical results with the thermodynamics approach. In this dissertation we present an alternative way of making the connection with thermodynamics via the Fourier’s law for heat conduction. |
Identificador |
http://hdl.handle.net/11449/137941 33004137063P6 |
Idioma(s) |
por |
Publicador |
Universidade Estadual Paulista (UNESP) |
Direitos |
openAccess |
Palavras-Chave | #Termodinâmica #Bilhares #Escala #Thermodynamics #Billiards #Scaling |
Tipo |
info:eu-repo/semantics/masterThesis |