509 resultados para Gates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The Gow-Gates technique is said to have several advantages over traditional techniques to achieve mandibular nerve anesthesia; however, its routine use is quite limited, mainly due to complications during visual alignment of reference landmarks. The purpose of this study was to verify the validity and accuracy of a new method to reach the injection site. Material and Methods: Fifteen magnetic resonance images were captured. Distances from the ideal injection point in the condylar neck (puncture ideal) to the injection points located in the a and 0 plane intersection (Puncture Gow-Gates and puncture modified) were measured and compared. Results: Positive and significant (P <= .003) Pearson correlations between landmarks and injection points confirmed the validity of the modified technique. Paired t test showed that the segment line puncture ideal-puncture modified, 5.17 mm, was 3 times shorter (P < .001) than the segment line puncture ideal-puncture Gow-Gates, 17.91 mm. As calculated by linear regression, establishing the injection point of the modified technique depended only on the anteroposterior and lateromedial condyle positions. Conclusions: The modified technique proved to be valid and precise and has a determined and an effective injection site. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:2609-2616, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss techniques for producing, manipulating, and measuring qubits encoded optically as vacuum- and single-photon states. We show that a universal set of nondeterministic gates can be constructed using linear optics and photon counting. We investigate the efficacy of a test gate given realistic detector efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central amygdala (CeA) projections to hypothalamic and brain stem nuclei regulate the behavioral and physiological expression of fear, but it is unknown whether these different aspects of the fear response can be separately regulated by the CeA. We combined fluorescent retrograde tracing of CeA projections to nuclei that modulate fear-related freezing or cardiovascular responses with in vitro electrophysiological recordings and with in vivo monitoring of related behavioral and physiological parameters. CeA projections emerged from separate neuronal populations with different electrophysiological characteristics and different response properties to oxytocin. In vivo, oxytocin decreased freezing responses in fear-conditioned rats without affecting the cardiovascular response. Thus, neuropeptidergic signaling can modulate the CeA outputs through separate neuronal circuits and thereby individually steer the various aspects of the fear response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate. A proposal to realize a SWAP gate within the same molecule is also discussed. Electronic paramagnetic resonance experiments confirm that CNOT and SWAP transitions are not forbidden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta un estudio químico y estructural de las capas metálicas de Pt y TaSix utilizadas como puerta catalítica en sensores de gas de alta temperatura basados en dispositivos MOS de SiC. Para ello se han depositado capas de diferentes espesores sobre substratos de Si. Los resultados muestran que con la reducción del espesor de Pt y con un recocido se consigue aumentar la rugosidad de las capas de puerta, lo que debería aumentar la sensibilidad y la velocidad de respuesta de los dispositivos que las incorporasen. Otro efecto del recocido es la transformación química del material de la puerta que, para capas delgadas de Pt con TaSix, produce la transformación total Pt en Pt2Ta, lo que podría afectar a las características catalíticas de la puerta. Los primeros resultados eléctricos indican que, a pesar de que las capas de Pt empleadas son gruesas y compactas, los diodos MOS túnel de SiC son sensibles a los gases CO y NO2, aunque presentan una velocidad de respuesta bastante lenta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How inflammatory caspases trigger pyroptotic cell death is mostly unexplained. In this issue of Immunity, Núñez and colleagues report that caspase-11 cleaves the transmembrane channel pannexin-1, causing an efflux of cellular ATP that promotes a P2X7 receptor-dependent pyroptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

kuv., 21 x 27 cm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Letter to Messrs. Woodruff and Woodruff of St. Catharines from Thomas Secord of St. Catharines who was applying for the job of a clerk. He states that he would like to make $15 a month plus board, July 31, 1849.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias Odontológicas con Especialidad en Endodoncia) UANL, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive method based on the principle of photothermal phenomena to realize optical logic gates is presented. A dual beam thermal lens method using low power cw lasers in a dye-doped polymer can be very effectively used as an alternate technique to perform the logical function such as NAND, AND and OR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.