965 resultados para Games with a purpose
Resumo:
Studies show the positive effects that video games can have on student performance and attitude towards learning. In the past few years, strategies have been generated to optimize the use of technological resources with the aim of facilitating widespread adoption of technology in the classroom. Given its low acquisition and maintenance costs, the interpersonal computer allows individual interaction and simultaneous learning with large groups of students. The purpose of this work was to compare arithmetical knowledge acquired by third-grade students through the use of game-based activities and non-game-based activities using an interpersonal computer, with knowledge acquired through the use of traditional paper-and-pencil activities, and to analyze their impact in various socio-cultural contexts. To do this, a quasi-experimental study was conducted with 271 students in three different countries (Brazil, Chile, and Costa Rica), in both rural and urban schools. A set of educational games for practising arithmetic was developed and tested in six schools within these three countries. Results show that there were no significant differences (ANCOVA) in the learning acquired from game-based vs. non-game-based activities. However, both showed a significant difference when compared with the traditional method. Additionally, both groups using the interpersonal computer showed higher levels of student interest than the traditional method group, and these technological methods were seen to be especially effective in increasing learning among weaker students.
Resumo:
Attention Deficit-Hyperactivity Disorder is a disease that affects 3 to 5 percent of children globally. Many of those live in areas with very few or no medical professionals qualified to help them. To help assuage this problem a system was developed that allows physicians to accompany their patient’s progress and prescribe treatments. These treatments can be drugs or behavioral exercises. The behavioral exercises were designed in the form of games in order to motivate the patients, children, for the treatment. The system allows the patients to play the prescribed games, under the supervision of their tutors. Each game is designed to improve the patient’s handling of their disease through training in a specific mental component. The objective of this approach is to complement the traditional form of treatment by allowing a physician to prescribe therapeutic games and maintaining the patients under supervision between their regular consultations. The main goal of this project is to provide the patients with a better control of their symptoms that with just traditional therapy. Experimental field tests with children and clinical staff, offer promising results. This research is developed in the context of a financed project involving INESC C (Polytechnic Institute of Leiria delegation), the Santo André Hospital of Leiria, and the start-up company PlusrootOne (that owns the project).
Resumo:
We examine a problem with n players each facing the same binary choice. One choice is superior to the other. The simple assumption of competition - that an individual's payoff falls with a rise in the number of players making the same choice, guarantees the existence of a unique symmetric equilibrium (involving mixed strategies). As n increases, there are two opposing effects. First, events in the middle of the distribution - where a player finds itself having made the same choice as many others - become more likely, but the payoffs in these events fall. In opposition, events in the tails of the distribution - where a player finds itself having made the same choice as few others - become less likely, but the payoffs in these events remain high. We provide a sufficient condition (strong competition) under which an increase in the number of players leads to a reduction in the equilibrium probability that the superior choice is made.
Resumo:
This article is a short introduction on how to use Modellus (a computer package that is freely available on the Internet and used in the IOP Advancing Physics course) to build physics games using Newton’s laws, expressed as differential equations. Solving systems of differential equations is beyond most secondary-school or first-year college students. However, with Modellus, the solution is simply the output of the usual physical reasoning: define the force law, compute its magnitude and components, use it to obtain the acceleration components, then the velocity components and, finally, use the velocity components to find the coordinates.
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
We consider cooperative environments with externalities (games in partition function form) and provide a recursive definition of dividends for each coalition and any partition of the players it belongs to. We show that with this definition and equal sharing of these dividends the averaged sum of dividends for each player, over all the coalitions that contain the player, coincides with the corresponding average value of the player. We then construct weighted Shapley values by departing from equal division of dividends and finally, for each such value, provide a bidding mechanism implementing it.
Resumo:
We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.
Resumo:
Two logically distinct and permissive extensions of iterative weak dominance are introduced for games with possibly vector-valued payoffs. The first, iterative partial dominance, builds on an easy-to check condition but may lead to solutions that do not include any (generalized) Nash equilibria. However, the second and intuitively more demanding extension, iterative essential dominance, is shown to be an equilibrium refinement. The latter result includes Moulin’s (1979) classic theorem as a special case when all players’ payoffs are real-valued. Therefore, essential dominance solvability can be a useful solution concept for making sharper predictions in multicriteria games that feature a plethora of equilibria.
Resumo:
The objective of this paper is to re-examine the risk-and effort attitude in the context of strategic dynamic interactions stated as a discrete-time finite-horizon Nash game. The analysis is based on the assumption that players are endogenously risk-and effort-averse. Each player is characterized by distinct risk-and effort-aversion types that are unknown to his opponent. The goal of the game is the optimal risk-and effort-sharing between the players. It generally depends on the individual strategies adopted and, implicitly, on the the players' types or characteristics.
Resumo:
We consider environments in which agents can cooperate on multiple issues and externalities are present both within and across issues. We propose a way to extend (Shapley) values that have been put forward to deal with externalities within issues to games where there are externalities within and across issues. We characterize our proposal through axioms that extend the Shapley axioms to our more general environment.
Resumo:
Gifted children develop asynchronously, often advanced for their age cognitively, but at or between their chronological and mental ages socially and emotionally (Robinson, 2008). In order to help gifted children and adolescents develop and practice social and emotional self-regulation skills, we investigated the use of an Adlerian play therapy approach during pen-and-paper role-playing games. Additionally, we used Goffman's (1961, 1974) social role identification and distance to encourage participants to experiment with new identities. Herein, we propose a psychosocial model of interactions during role-playing games based on Goffman's theory and Adlerian play therapy techniques, and suggest that role-playing games are an effective way of intervening with gifted children and adolescents to improve their intra- and interpersonal skills. We specifically targeted intrapersonal skills of exercising creativity, becoming self-aware, and setting individual goals by raising participants' awareness of their privately logical reasons for making decisions and their levels of social interest. We also targeted their needs and means of seeking significance in the group to promote collaboration and interaction skills with other gifted peers through role analysis, embracement, and distancing. We report results from a case study and conclude that role-playing games deserve more attention, both from researchers and clinical practitioners, because they encourage change while improving young clients' social and emotional development.
Resumo:
Payoff heterogeneity weakens positive feedback in binary choice models intwo ways. First, heterogeneity drives individuals to corners where theyare unaffected by strategic complementarities. Second, aggregate behaviouris smoother than individual behaviour when individuals are heterogeneous.However, this smoothing does not necessarily eliminate positive feedbackor guarantee a unique equilibrium. In games with an unbounded, continuouschoice space, heterogeneity may either weaken or strengthen positive feedback,depending on a simple convexity/concavity condition. We conclude that positivefeedback phenomena derived in representative agent models will often be robustto heterogeneity.
Resumo:
Experiments in which subjects play simultaneously several finite prisoner's dilemma supergames with and without an outside optionreveal that: (i) subjects use probabilistic start and endeffect behaviour, (ii) the freedom to choose whether to play the prisoner's dilemma game enhances cooperation, (iii) if the payoff for simultaneous defection is negative, subjects' tendency to avoid losses leads them to cooperate; while this tendency makes them stick to mutual defection if its payoff is positive.