52 resultados para Gâteaux Differentiability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

* Supported by NSERC (Canada)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B03

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a set of differential inequalities for positive definite functions based on previous results derived for positive definite kernels by purely algebraic methods. Our main results show that the global behavior of a smooth positive definite function is, to a large extent, determined solely by the sequence of even-order derivatives at the origin: if a single one of these vanishes then the function is constant; if they are all non-zero and satisfy a natural growth condition, the function is real-analytic and consequently extends holomorphically to a maximal horizontal strip of the complex plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the Heston volatility or equivalently the Cox-Ingersoll-Ross process is Malliavin differentiable and give an explicit expression for the derivative. This result assures the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model and the Cox-Ingersoll-Ross model for interest rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For subordinators with positive drift we extend recent results on the structure of the potential measures and the renewal densities. Applying Fourier analysis a new representation of the potential densities is derived from which we deduce asymptotic results and show how the atoms of the Lévy measure translate into points of (non)differentiability of the potential densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For strictly quasi concave differentiable utility functions, demand is shown to be differentiable almost everywhere if marginal utilities are pointwise Lipschitzian. For concave utility functions, demand is differentiable almost everywhere in the case of differentiable additively separable utility or in the case of quasi-linear utility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that any continuous function with domain {z ∈ C: |z| ≤ 1} that generates a bizonal positive definite kernel on the unit sphere in 'C POT.Q' , q ⩾ 3, is continuously differentiable in {z ∈ C: |z| < 1} up to order q − 2, with respect to both z and 'Z BARRA'. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z ∈ C: |z| < 1} up to the same order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present a classification of some of the existing Penalty Methods (denominated the Exact Penalty Methods) and describe some of its limitations and estimated. With these methods we can solve problems of optimization with continuous, discrete and mixing constrains, without requiring continuity, differentiability or convexity. The boarding consists of transforming the original problem, in a sequence of problems without constrains, derivate of the initial, making possible its resolution for the methods known for this type of problems. Thus, the Penalty Methods can be used as the first step for the resolution of constrained problems for methods typically used in by unconstrained problems. The work finishes discussing a new class of Penalty Methods, for nonlinear optimization, that adjust the penalty parameter dynamically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an envelope theorem for establishing first-order conditions in decision problems involving continuous and discrete choices. Our theorem accommodates general dynamic programming problems, even with unbounded marginal utilities. And, unlike classical envelope theorems that focus only on differentiating value functions, we accommodate other endogenous functions such as default probabilities and interest rates. Our main technical ingredient is how we establish the differentiability of a function at a point: we sandwich the function between two differentiable functions from above and below. Our theory is widely applicable. In unsecured credit models, neither interest rates nor continuation values are globally differentiable. Nevertheless, we establish an Euler equation involving marginal prices and values. In adjustment cost models, we show that first-order conditions apply universally, even if optimal policies are not (S,s). Finally, we incorporate indivisible choices into a classic dynamic insurance analysis.