Differentiability of bizonal positive definite kernels on complex spheres
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
21/02/2014
21/02/2014
01/04/2014
|
Resumo |
We prove that any continuous function with domain {z ∈ C: |z| ≤ 1} that generates a bizonal positive definite kernel on the unit sphere in 'C POT.Q' , q ⩾ 3, is continuously differentiable in {z ∈ C: |z| < 1} up to order q − 2, with respect to both z and 'Z BARRA'. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z ∈ C: |z| < 1} up to the same order. |
Identificador |
Journal of Mathematical Analysis and Applications, San Diego, v.412, n.1, p.189-199, 2014 http://www.producao.usp.br/handle/BDPI/44033 10.1016/j.jmaa.2013.10.057 |
Idioma(s) |
eng |
Publicador |
Academic Press Elsevier San Diego |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess Copyright Elsevier |
Palavras-Chave | #Differentiability #Positive definite kernels and functions #Sphere #Bizonal kernels #ANÁLISE FUNCIONAL |
Tipo |
article original article publishedVersion |