Differentiability of bizonal positive definite kernels on complex spheres


Autoria(s): Menegatto, Valdir Antonio
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

21/02/2014

21/02/2014

01/04/2014

Resumo

We prove that any continuous function with domain {z ∈ C: |z| ≤ 1} that generates a bizonal positive definite kernel on the unit sphere in 'C POT.Q' , q ⩾ 3, is continuously differentiable in {z ∈ C: |z| < 1} up to order q − 2, with respect to both z and 'Z BARRA'. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z ∈ C: |z| < 1} up to the same order.

Identificador

Journal of Mathematical Analysis and Applications, San Diego, v.412, n.1, p.189-199, 2014

http://www.producao.usp.br/handle/BDPI/44033

10.1016/j.jmaa.2013.10.057

http://dx.doi.org/10.1016/j.jmaa.2013.10.057

Idioma(s)

eng

Publicador

Academic Press

Elsevier

San Diego

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

Copyright Elsevier

Palavras-Chave #Differentiability #Positive definite kernels and functions #Sphere #Bizonal kernels #ANÁLISE FUNCIONAL
Tipo

article

original article

publishedVersion