799 resultados para Fuzzy inference systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through an estimation of time series. More specifically, the Mackey-Glass chaotic time series estimation is used for the validation of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behavior. In this paper, a system based on fuzzy logic systems is developed to overcome the problems usually found in the conventional mathematical models. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the fuzzy approach. Simulation results are presented to justify the validity of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel approach for mapping lightning processes using fuzzy logic. The core regarding lightning process is to identify and to model those uncertain information on mathematical principles. In fact, the lightning process involves several nonlinear features that our current mathematical tools would not be able to model. The estimation process has been carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.