920 resultados para Fungal metabolites
Resumo:
A concise and diversity-oriented approach, incorporating elements of regio- and stereocontrol, to the recently isolated bioactive polyoxygenated cyclohexanoid natural products acremines A. B and I. from commercially accessible building blocks, is outlined. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sago starch is an important source of dietary carbohydrates in lowland Papua New Guinea. Over the past 30 years there have been sporadic reports of severe illness following consumption of sago starch. A common assumption is that fungal metabolites might be associated with the illness, leading to the need for a more thorough investigation of the mycoflora of sago starch. Sago starch was collected from areas of high sago consumption in Papua New Guinea for fungal analysis (69 samples). Storage methods and duration were recorded at the time of collection and pH on arrival at the laboratory. Yeasts were isolated from all samples except two, ranging from 1.2 × 103 to 8.3 × 107 cfu/g. Moulds were isolated from 65 of the 69 samples, ranging from 1.0 × 102 to 3.0 × 106 cfu/g. Of 44 samples tested for ergosterol content, 42 samples showed the presence of fungal biomass. Statistical analyses indicated that sago starch stored for greater than five weeks yielded significantly higher ergosterol content and higher numbers of moulds than sago stored for less than five weeks. The method of storage was also shown to influence mould numbers with storage in natural woven fibre containers returning significantly greater numbers than present in other storage methods tested. Potentially mycotoxigenic genera of moulds including Aspergillus and Penicillium were commonly isolated from sago starch, and as such storage factors that influence the growth of these and other filamentous fungi might contribute to the safety of traditional sago starch in PNG.
Resumo:
Fungal metabolism of halogenated and related steroids was investigated. The fungi Aspergillus niger ATCC 9142, Curvularia lunata NRRL 2380 and Rhizopus stolonifer ATCC6227b were studied in this regard. 2l-Fluoro-, 2l-chloro, 2l-bromo- and 2l-methyl-pregn-4-ene-3,20diones were prepared and incubated with ~ niger (a C-2l-hydroxylator) in order to observe the effect of the C-2l substituent on the metabolism of these substrates. In all four cases, the C-2l substituent prevented any significant metabolism of these substrates. llB-Fluoropregn-4-ene-3,20-dione was prepared and incubated with C. lunata (an llB-hydroxylator) and ~ stolonifer (an lla-hydroxylator). With ~ lunata, the ll-fluoro- substituent prevent hydroxylation at the 11 position, but diverted it to a site remote from the fluorine atom. In contrast, with ~ stolonifer the llB-fluoro- substituent, although slowing the apparent rate of hydroxylation, did not prevent its occurrence at the 11a- position. llB-Hydroxypregn-4-ene-3,20-dione was also incubated with R. stolonifer. The llB-hydroxy-;group did not appear to have any significant effect on hydroxylation at the lla- position. The incubation of a substrate, unsaturated at a favoured site of hydroxylation with Rhizopus arrhizus ATCC 11145 provided a complex mixture of products; among them were both the a and S epoxides. The formation of these products is rationalized as arising because of the lack of regio- and stereospecificity of the hydroxylase enzyme(s) involved.
Resumo:
The aggressive mushroom competitor, Trichoderma harzianum biotype Th4, produces volatile antifungal secondary metabolites both in culture and during the disease cycle in compost. Th4 cultures produced one such compound only when cultured in the presence of Agaricus bisporus mycelium or liquid medium made from compost colonised with A. bisporus. This compound has TLC and UVabsorption and characteristics indicating that it belongs to a class of pyrone antibiotics characterised from other T. harzianum biotypes. UV absorption spectra indicated this compound was not 6-pentyl-2H-pyran-one (6PAP), the volatile antifungal metabolite widely described in Th1. Furthermore, this compound was not produced by Th1 under any culture conditions. Mycelial growth of A. bisporus, Botrytis cinerea and Sclerotium cepivorum was inhibited in the presence of this compound through volatility , diffusion and direct application. This indicates that Th4 produces novel, volatile, antifungal metabolites in the presence of A. bisporus that are likely involved in green mould disease of mushroom crops.
Resumo:
A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.
Resumo:
Endophytic microorganisms live inside tissues of host plants apparently do not causing warning to them, and area promising source of bioactive molecules as antimicrobial and antitumoral drugs. In this work, we report the isolation of eugenitin from cultures of the endophyte Mycoleptodiscus indicus and its potential as additive for Aspergillus niveus glucoamylase activation. The glucoamylase hydrolytic activity increased twofold using 5 mM of eugenitin and this activation could be explained by the binding mode of eugenitin with the three-dimensional structure of glucoamylase. The in silica prediction of ligand binding sites revealed at least 9 possible interaction sites able to accommodate eugenitin on glucoamylase from Hypocrea jecorina. Besides, we evaluated the effect of pH and temperature on activity and stability, as well as in the hydrolysis of different substrates and kinetic parameters either in presence or absence of eugenitin. The results displayed by eugenitin as additive to glucoamylase activation are promising and provide novel perspectives for applications of fungal metabolites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two new antibacterial agents, rugulotrosin A (1) and B (2), were obtained from cultures of a Penicillium sp. isolated from soil samples acquired near Sussex Inlet, New South Wales, Australia. Rugulotrosin A (1) is a chiral symmetric dimer, and its relative stereostructure was determined by spectroscopic and X-ray crystallographic analysis. Rugulotrosin B (2) is a chiral asymmetric dimer isomeric with 1. Its structure was determined by spectroscopic analysis with comparison to the co-metabolite 1 and previously reported fungal metabolites. Both rugulotrosins A and B displayed significant antibacterial activity against Bacillus subtilis, while rugulotrosin A was also strongly active against Enterococcus faecalis and B. cereus.
Resumo:
An Australian isolate of Penicillium striatisporum collected near Shalvey, New South Wales, exhibited selective antifungal activity against Candida albicans versus Saccharomyces cerevisiae. Bioassay-directed fractionation yielded members of the rare class of fungal metabolites known as the calbistrins. These included a new example of this structure class, calbistrin E (1), as well as the known polyenes calbistrin C (2) and deformylcalbistrin A (3). Also recovered from P. striatisporum were new triene and butenolide acids, striatisporin A (4) and striatisporolide A (5), together with the known fungal metabolites versiol (6) and (+)-hexylitaconic acid (7). Structures for all metabolites were determined by detailed spectroscopic analysis.
Resumo:
There is considerable interest in the isolation of potent radical scavenging compounds from natural resources to treat diseases involving oxidative stress. In this report, four new fungal metabolites including one new bisdihydroanthracenone derivative (1, eurorubrin), two new seco-anthraquinone derivatives [3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl4-O-(alpha-D-ribofuranosyl)-9-dehydroxyeurotinone], and one new anthraquinone glycoside [6,3-O-(alpha-D-ribofuranosyl)questin], were isolated and identified from Eurotium rubrum, an endophytic fungal strain that was isolated from the inner tissue of the stem of the marine mangrove plant Hibiscus tiliaceus. In addition, three known compounds including asperflavin (2), 2-O-methyleurotinone (5), and questin (7) were also isolated and identified. Their structures were elucidated on the basis of spectroscopic analysis. All of the isolated compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.
Resumo:
Background Aflatoxins are fungal metabolites that frequently contaminate staple foods in much of sub-Saharan Africa, and are associated with increased risk of liver cancer and impaired growth in young children. We aimed to assess whether postharvest measures to restrict aflatoxin contamination of groundnut crops could reduce exposure in west African villages.
Methods We undertook an intervention study at subsistence farms in the lower Kindia region of Guinea. Farms from 20 villages were included, ten of which implemented a package of postharvest measures to restrict aflatoxin contamination of the groundnut crop; ten controls followed usual postharvest practices. We measured the concentrations of blood aflatoxin-albumin adducts from 600 people immediately after harvest and at 3 months and 5 months postharvest to monitor the effectiveness of the intervention.
Findings In control villages mean aflatoxin-albumin concentration increased postharvest (from 5.5 pg/mg [95% CI 4.7-6.1] immediately after harvest to 18.7 pg/mg [17.0-20.6] 5 months later). By contrast, mean aflatoxin-albumin concentration in intervention villages after 5 months of groundnut storage was much the same as that immediately postharvest (7.2 pg/mg [6.2-8.4] vs 8.0 pg/mg [7.0-9.2]). At 5 months, mean adduct concentration in intervention villages was less than 50% of that in control villages (8.0 pg/mg [7.2-9.2] vs 18.7 pg/mg [17.0-20.6], p<0.0001). About a third of the number of people had non-detectable aflatoxin-albumin concentrations at harvest. At 5 months, five (2%) people in the control villages had non-detectable adduct concentrations compared with 47 (20%) of those in the intervention group (p<0.0001). Mean concentrations of aflatoxin B1 in groundnuts in household stores in intervention and control villages were consistent with measurements of aflatoxin-albumin adducts.
Interpretation Use of low-technology approaches at the subsistence-farm level in sub-Saharan Africa could substantially reduce the disease burden caused by aflatoxin exposure.
Resumo:
Evidence that some of the fungal metabolites present in food and feed may act as potential endocrine disruptors is increasing. Enniatin B (ENN B) is among the emerging Fusarium mycotoxins known to contaminate cereals. In this study, the H295R and neonatal porcine Leydig cell (LC) models, and reporter gene assays (RGAs) have been used to investigate the endocrine disrupting activity of ENN B. Aspects of cell viability, cell cycle distribution, hormone production as well as the expression of key steroidogenic genes were assessed using the H295R cell model. Cell viability and hormone production levels were determined in the LC model, while cell viability and steroid hormone nuclear receptor transcriptional activity were measured using the RGAs. ENN B (0.01–100 μM) was cytotoxic in the H295R and LC models used; following 48 h incubation with 100 μM. Flow cytometry analysis showed that ENN B exposure (0.1–25 μM) led to an increased proportion of cells in the S phase at higher ENN B doses (>10 μM) while cells at G0/G1 phase were reduced. At the receptor level, ENN B (0.00156–15.6 μM) did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs), however cell viability was affected at 15.6 μM. Measurement of hormone levels in H295R cells revealed that the production of progesterone, testosterone and cortisol in exposed cells were reduced, but the level of estradiol was not significantly affected. There was a general reduction of estradiol and testosterone levels in exposed LC. Only the highest dose (100 μM) used had a significant effect, suggesting the observed inhibitory effect is more likely associated with the cytotoxic effect observed at this dose. Gene transcription analysis in H295R cells showed that twelve of the sixteen genes were significantly modulated (p < 0.05) by ENN B (10 μM) compared to the control. Genes HMGR, StAR, CYP11A, 3βHSD2 and CYP17 were downregulated, whereas the expression of CYP1A1, NR0B1, MC2R, CYP21, CYP11B1, CYP11B2 and CYP19 were upregulated. The reduction of hormones and modulation of genes at the lower dose (10 μM) in the H295R cells suggests that adrenal endocrine toxicity is an important potential hazard.
Resumo:
There are more than 300 potential mycotoxins that can contaminate food and feed and cause adverse effects in humans and animals. The data on the co-occurrence of mycotoxins in novel animal feed materials, such as distiller's dried grain with solubles (DDGS), are limited. Thus, a UHPLC-MS/MS method for the quantitation of 77 mycotoxins and other fungal metabolites was used to analyze 169 DDGS samples produced from wheat, maize, and barley and 61 grain samples. All DDGS samples analyzed were contaminated with 13-34 different mycotoxins. Fumonisins were present in all 52 maize DDGS samples (81.0-6890 μg/kg for fumonisin B1), and deoxynivalenol was present in all 99 wheat DDGS samples (39.3-1120 μg/kg). A number of co-occurring mycotoxins were also identified. Due to the high co-occurrence of mycotoxins, routine screening of the animal feed ingredients is highly recommended to allow the highlighted risks to be effectively managed.
Resumo:
Endophytic fungi are a rich source of new and biologically active natural products. They colonize a relatively unexplored ecological habitat and their secondary metabolism is particularly active, presumably due to metabolic interactions with their hosts. In the course of our continuing investigations for new and bioactive compounds from endophytic fungi from brazilian flora Alibertia macrophylla, Caseria sylvestris, Ocotea corymbosa, Cassia spectabilis, Piper aduncum, Cryptocaria mandioccana, Xylopia aromatica and Palicourea marcgravii were investigated. Forty two natural products were isolated and their structures were established on the basis of comprehensive spectral analysis, mainly using 1D and 2D NMR experiments. The compounds were tested in their antifungal, antioxidant, anticholinesterasic and anticancer activities.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)