988 resultados para Free Banach space
Resumo:
[EN] As is well known, in any infinite-dimensional Banach space one may find fixed point free self-maps of the unit ball, retractions of the unit ball onto its boundary, contractions of the unit sphere, and nonzero maps without positive eigenvalues and normalized eigenvectors. In this paper, we give upper and lower estimates, or even explicit formulas, for the minimal Lipschitz constant and measure of noncompactness of such maps.
Resumo:
This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
Resumo:
Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let X be an in�finite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B1 � X and unbounded on another given ball B2 � X have been obtained. In this paper we consider the problem of �finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection. RESUMEN. Sea X un espacio de Banach complejo de dimensión infinita. En este trabajo, los autores estudian el problema de encontrar una función entera en X que esté uniformemente acotada en una colección de de bolas en X y que no esté acotada en las bolas de otra colección.
Resumo:
Research partially supported by a grant of Caja de Ahorros del Mediterraneo.
Resumo:
We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.
Resumo:
* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.
Resumo:
A dichotomysimilar property for a class of homogeneous differential equations in an arbitrary Banach space is introduced. By help of them, existence of quasi bounded solutions of the appropriate nonhomogeneous equation is proved.
Resumo:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.
Resumo:
2000 Mathematics Subject Classification: 46B20, 46B26.
Resumo:
We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable) operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of the adjoint of a (weakly) compact linear operator.
Resumo:
A group G is representable in a Banach space X if G is isomorphic to the group of isometrics on X in some equivalent norm. We prove that a countable group G is representable in a separable real Banach space X in several general cases, including when G similar or equal to {-1,1} x H, H finite and dim X >= vertical bar H vertical bar or when G contains a normal subgroup with two elements and X is of the form c(0)(Y) or l(p)(Y), 1 <= p < +infinity. This is a consequence of a result inspired by methods of S. Bellenot (1986) and stating that under rather general conditions on a separable real Banach space X and a countable bounded group G of isomorphisms on X containing -Id, there exists an equivalent norm on X for which G is equal to the group of isometrics on X. We also extend methods of K. Jarosz (1988) to prove that any complex Banach space of dimension at least 2 may be renormed with an equivalent complex norm to admit only trivial real isometries, and that any complexification of a Banach space may be renormed with an equivalent complex norm to admit only trivial and conjugation real isometrics. It follows that every real Banach space of dimension at least 4 and with a complex structure may be renormed to admit exactly two complex structures up to isometry, and that every real Cartesian square may be renormed to admit a unique complex structure up to isometry.
Resumo:
We show the results in Chalishajar [Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst. 344(1) (2007) 12-21] and Chang and Chalishajar [Controllability of mixed Volterra-Fredholm type integro-differential systems in Banach space, J. Franklin Inst., doi:10.1016/j. jfranklin.2008.02.002] are only valid for ordinary differential control systems. As a result the examples provided cannot be recovered as applications of the abstract results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.