Lipschitz compact operators


Autoria(s): Jiménez Vargas, Antonio; Sepulcre, Juan Matias; Villegas Vallecillos, Moisés
Contribuinte(s)

Universidad de Alicante. Departamento de Análisis Matemático

Curvas Alpha-Densas. Análisis y Geometría Local

Data(s)

20/02/2014

20/02/2014

15/02/2014

Resumo

We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable) operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of the adjoint of a (weakly) compact linear operator.

Identificador

Journal of Mathematical Analysis and Applications. 2014, Accepted Manuscript, Available online 15 February 2014. doi:10.1016/j.jmaa.2014.02.012

0022-247X (Print)

1096-0813 (Online)

http://hdl.handle.net/10045/35672

10.1016/j.jmaa.2014.02.012

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.jmaa.2014.02.012

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Lipschitz operator #Strongly Lipschitz p-integral operator #Strongly Lipschitz p-nuclear operator #Free Banach space #Análisis Matemático
Tipo

info:eu-repo/semantics/article