Lipschitz compact operators
Contribuinte(s) |
Universidad de Alicante. Departamento de Análisis Matemático Curvas Alpha-Densas. Análisis y Geometría Local |
---|---|
Data(s) |
20/02/2014
20/02/2014
15/02/2014
|
Resumo |
We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable) operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of the adjoint of a (weakly) compact linear operator. |
Identificador |
Journal of Mathematical Analysis and Applications. 2014, Accepted Manuscript, Available online 15 February 2014. doi:10.1016/j.jmaa.2014.02.012 0022-247X (Print) 1096-0813 (Online) http://hdl.handle.net/10045/35672 10.1016/j.jmaa.2014.02.012 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.jmaa.2014.02.012 |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #Lipschitz operator #Strongly Lipschitz p-integral operator #Strongly Lipschitz p-nuclear operator #Free Banach space #Análisis Matemático |
Tipo |
info:eu-repo/semantics/article |