1000 resultados para Fock space


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mandelstam�s argument that PCAC follows from assigning Lorentz quantum numberM=1 to the massless pion is examined in the context of multiparticle dual resonance model. We construct a factorisable dual model for pions which is formulated operatorially on the harmonic oscillator Fock space along the lines of Neveu-Schwarz model. The model has bothm ? andm ? as arbitrary parameters unconstrained by the duality requirement. Adler self-consistency condition is satisfied if and only if the conditionm?2?m?2=1/2 is imposed, in which case the model reduces to the chiral dual pion model of Neveu and Thorn, and Schwarz. The Lorentz quantum number of the pion in the dual model is shown to beM=0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce the defect sequence for a contractive tuple of Hilbert space operators and investigate its properties. The defect sequence is a sequence of numbers, called defect dimensions associated with a contractive tuple. We show that there are upper bounds for the defect dimensions. The tuples for which these upper bounds are obtained, are called maximal contractive tuples. The upper bounds are different in the non-commutative and in the commutative case. We show that the creation operators on the full Fock space and the coordinate multipliers on the Drury-Arveson space are maximal. We also study pure tuples and see how the defect dimensions play a role in their irreducibility. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown how to use non-commutative stopping times in order to stop the CCR flow of arbitrary index and also its isometric cocycles, i.e. left operator Markovian cocycles on Boson Fock space. Stopping the CCR flow yields a homomorphism from the semigroup of stopping times, equipped with the convolution product, into the semigroup of unital endomorphisms of the von Neumann algebra of bounded operators on the ambient Fock space. The operators produced by stopping cocycles themselves satisfy a cocycle relation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gough, John; Van Handel, R., (2007) 'Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode', Journal of Statistical Physics 127(3) pp.575-607 RAE2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A relativistic four-component study was performed for the XeF(2) molecule by using the Dirac-Coulomb (DC) Hamiltonian and the relativistic adapted Gaussian basis sets (RAGBSs). The comparison of bond lengths obtained showed that relativistic effects on this property are small (increase of only 0.01 angstrom) while the contribution of electron correlation, obtained at CCSD(T) or CCSD-T levels, is more important (increase of 0.05 angstrom). Electron correlation is also dominant over relativistic effects for dissociation energies. Moreover, the correlation-relativity interaction is shown to be negligible for these properties. The electron affinity, the first ionization potential and the double ionization potential are obtained by means of the Fock-space coupled cluster (FSCC) method, resulting in DC-CCSD-T values of 0.3 eV, 12.5 eV and 32.3 eV, respectively. Vibrational frequencies and some anharmonicity constants were also calculated under the four-component formalism by means of standard perturbation equations. All these molecular properties are, in general, ill satisfactory agreement with available experimental results. Finally, a partition in terms of charge-charge flux-dipole flux (CCFDF) contributions derived by means of the quantum theory of atoms in molecules (QTAIM) in non-relativistic QCISD(FC)/3-21G* calculations was carried out for XeF(2) and KrF(2). This analysis showed that the most remarkable difference between both molecules lies on the charge flux contribution to the asymmetric stretching mode, which is negligible in KrF(2) but important in XeF(2). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All possible Bogoliubov operators that generate the thermal transformations in thermo field dynamics form an SU(1,1) group. We discuss this construction in the bosonic string theory. In particular, the transformation of the Fock space and string operators generated by the most general SU(1,1) unitary Bogoliubov transformation and the entropy of the corresponding thermal string are computed. Also, we construct the thermal D-brane generated by the SU(1,1) transformation in a constant Kalb-Ramond field and compute its entropy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T not equal0 for bosonic open strings with a constant gauge field F-ab coupled to the boundary. The construction is done in the framework of ther-mo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the entropy of the Dp-brane at finite temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of the reducibility of the Fock space representation of the q-deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is carried out by using the properties of the Gauss polynomials. When the deformation parameter is a root of unity, an interesting result comes out in the form of a reducibility scheme for the space representation which is based on the classification of the primitive or nonprimitive character of the deformation parameter. An application is carried out for a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is explicitly applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A thermodynamical analysis for the type IIB superstring in a pp-wave background is considered. The thermal Fock space is built and the temperature SUSY breaking appears naturally by analyzing the thermal vacuum. All the thermodynamical quantities are derived by evaluating matrix elements of operators in the thermal Fock space. This approach seems to be suitable to study thermal effects in the BMN correspondence context. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model. (C) 1998 Academic Press.