215 resultados para Feynman-Kac
Resumo:
The thesis presents a probabilistic approach to the theory of semigroups of operators, with particular attention to the Markov and Feller semigroups. The first goal of this work is the proof of the fundamental Feynman-Kac formula, which gives the solution of certain parabolic Cauchy problems, in terms of the expected value of the initial condition computed at the associated stochastic diffusion processes. The second target is the characterization of the principal eigenvalue of the generator of a semigroup with Markov transition probability function and of second order elliptic operators with real coefficients not necessarily self-adjoint. The thesis is divided into three chapters. In the first chapter we study the Brownian motion and some of its main properties, the stochastic processes, the stochastic integral and the Itô formula in order to finally arrive, in the last section, at the proof of the Feynman-Kac formula. The second chapter is devoted to the probabilistic approach to the semigroups theory and it is here that we introduce Markov and Feller semigroups. Special emphasis is given to the Feller semigroup associated with the Brownian motion. The third and last chapter is divided into two sections. In the first one we present the abstract characterization of the principal eigenvalue of the infinitesimal generator of a semigroup of operators acting on continuous functions over a compact metric space. In the second section this approach is used to study the principal eigenvalue of elliptic partial differential operators with real coefficients. At the end, in the appendix, we gather some of the technical results used in the thesis in more details. Appendix A is devoted to the Sion minimax theorem, while in appendix B we prove the Chernoff product formula for not necessarily self-adjoint operators.
Resumo:
2000 Mathematics Subject Classification: 60H30, 35K55, 35K57, 35B35.
Resumo:
El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.
Resumo:
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independient of random motion, and intensities of reverses are defined by a particle's current direction. A soluton of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) have a so-called McKean representation via such processes. Commonly this system possesses traveling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed.This Paper realizes the McKean programme for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.
Resumo:
We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials
Resumo:
Apresento aqui uma abordagem que unifica a literatura sobre os vários modelos de apreçamento de derivativos que consiste em obter por argumentos intuitivos de não arbitragem uma Equação Diferencial Parcial(EDP) e através do método de Feynman-Kac uma solução que é representada por uma esperança condicional de um processo markoviano do preço do derivativo descontado pela taxa livre de risco. Por este resultado, temos que a esperança deve ser tomada com relação a processos que crescem à taxa livre de risco e por este motivo dizemos que a esperança é tomada em um mundo neutro ao risco(ou medida neutra ao risco). Apresento ainda como realizar uma mudança de medida pertinente que conecta o mundo real ao mundo neutro ao risco e que o elemento chave para essa mudança de medida é o preço de mercado dos fatores de risco. No caso de mercado completo o preço de mercado do fator de risco é único e no caso de mercados incompletos existe uma variedade de preços aceitáveis para os fatores de risco pelo argumento de não arbitragem. Neste último caso, os preços de mercado são geralmente escolhidos de forma a calibrar o modelo com os dados de mercado.
Resumo:
This thesis deals with inflation theory, focussing on the model of Jarrow & Yildirim, which is nowadays used when pricing inflation derivatives. After recalling main results about short and forward interest rate models, the dynamics of the main components of the market are derived. Then the most important inflation-indexed derivatives are explained (zero coupon swap, year-on-year, cap and floor), and their pricing proceeding is shown step by step. Calibration is explained and performed with a common method and an heuristic and non standard one. The model is enriched with credit risk, too, which allows to take into account the possibility of bankrupt of the counterparty of a contract. In this context, the general method of pricing is derived, with the introduction of defaultable zero-coupon bonds, and the Monte Carlo method is treated in detailed and used to price a concrete example of contract. Appendixes: A: martingale measures, Girsanov's theorem and the change of numeraire. B: some aspects of the theory of Stochastic Differential Equations; in particular, the solution for linear EDSs, and the Feynman-Kac Theorem, which shows the connection between EDSs and Partial Differential Equations. C: some useful results about normal distribution.
Resumo:
This thesis is a compilation of 6 papers that the author has written together with Alberto Lanconelli (chapters 3, 5 and 8) and Hyun-Jung Kim (ch 7). The logic thread that link all these chapters together is the interest to analyze and approximate the solutions of certain stochastic differential equations using the so called Wick product as the basic tool. In the first chapter we present arguably the most important achievement of this thesis; namely the generalization to multiple dimensions of a Wick-Wong-Zakai approximation theorem proposed by Hu and Oksendal. By exploiting the relationship between the Wick product and the Malliavin derivative we propose an original reduction method which allows us to approximate semi-linear systems of stochastic differential equations of the Itô type. Furthermore in chapter 4 we present a non-trivial extension of the aforementioned results to the case in which the system of stochastic differential equations are driven by a multi-dimensional fraction Brownian motion with Hurst parameter bigger than 1/2. In chapter 5 we employ our approach and present a “short time” approximation for the solution of the Zakai equation from non-linear filtering theory and provide an estimation of the speed of convergence. In chapters 6 and 7 we study some properties of the unique mild solution for the Stochastic Heat Equation driven by spatial white noise of the Wick-Skorohod type. In particular by means of our reduction method we obtain an alternative derivation of the Feynman-Kac representation for the solution, we find its optimal Hölder regularity in time and space and present a Feynman-Kac-type closed form for its spatial derivative. Chapter 8 treats a somewhat different topic; in particular we investigate some probabilistic aspects of the unique global strong solution of a two dimensional system of semi-linear stochastic differential equations describing a predator-prey model perturbed by Gaussian noise.
Resumo:
Questo elaborato si pone come obiettivo l’introduzione e lo studio di due strumenti estremamente interessanti in Analisi Stocastica per le loro applicazioni nell’ambito del controllo ottimo stocastico e, soprattutto (per i fini di questo lavoro), della finanza matematica: le equazioni differenziali stocastiche backward (BSDEs) e le equazioni differenziali stocastiche forward-backward (FBSDEs). Innanzitutto, la trattazione verterà sull’analisi delle BSDEs. Partendo dal caso lineare, perfettamente esplicativo dei problemi di adattabilità che si riscontrano nella definizione di soluzione, si passerà allo studio delle BSDEs non lineari con coefficienti Lipschitziani, giungendo, in entrambe le situazioni, alla prova di risultati di esistenza e unicità della soluzione. Tale analisi sarà completata con un’indagine sulle relazioni che persistono con le PDEs, che porterà all’introduzione di una generalizzazione della formula di Feynman-Kac e si concluderà, dopo aver introdotto le FBSDEs, con la definizione di un metodo risolutivo per queste ultime, noto come Schema a quattro fasi. Tali strumenti troveranno applicazione nel quinto e ultimo capitolo come modelli teorici alla base della Formula di Black-Scholes per problemi di prezzatura e copertura di opzioni.
Resumo:
When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.
Resumo:
Let G be an abstract Kac-Moody group over a finite field and G the closure of the image of G in the automorphism group of its positive building. We show that if the Dynkin diagram associated to G is irreducible and neither of spherical nor of affine type, then the contraction groups of elements in G which are not topologically periodic are not closed. (In those groups there always exist elements which are not topologically periodic.)