Ecuaciones diferenciales estocásticas con condición final y soluciones de viscosidad de EDPS semilineales de segundo orden


Autoria(s): Serrano, Rafael
Data(s)

2014

Resumo

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/10863

Idioma(s)

eng

Publicador

Facultad de Economía

Relação

Serie documentos de trabajo. No 168 (Octubre 2014)

https://ideas.repec.org/p/col/000092/012231.html

Direitos

info:eu-repo/semantics/openAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

instname:Universidad del Rosario

L. BLANCO, M. MUNOZ ˜ . Analisis Estoc ´ astico. ´ (2003) Departamentos de Estad´ıstica y Matematicas. Universidad Nacional de Colombia - Sede Bogot ´ a.´ Version preliminar.

P. BRIAND. Une remarque sur la formule de Feynman-Kac gen´ eralis ´ ee. ´ Comptes Rendus de l’Academie des Sciences de Paris ´ 321, Serie I, vol. 10 (1995) 1315-1318.

P. BRIAND. BSDE’s and viscosity solutions of semilinear PDE’s. Stochastics and Stochastics Reports 64 (1998) 1-32.

P. BRIAND, Y. HU. Stability of BSDE’s with random terminal time and homogenization of semilinear PDE’s. Journal of Funtional Analysis 115 (1998) 445-494.

P. BRIAND, R. CARMONA. BSDEs with polynomial growth generators. J. Appl. Math. Stochastic Anal. 13, No. 3 (2000) 207-238.

M.G. CRANDALL, L.C. EVANS, ISHII, P.L. LIONS. Some properties of viscosity solutions of Hamilton-Jacobi Equations. Transactions of the American Mathematical Society 282 (1984) 487-502.

M.G. CRANDALL, H. ISHII, P.L. LIONS. User’s guide to viscosity solutions of second order partial differential equations. Bulletin (New Series) of the American Mathematical Society, vol 27, No.1 (1992) 1-67.

M.G. CRANDALL, P.L. LIONS. Viscosity solutions of Hamilton-Jacobi Equations. Transactions of the American Mathematical Society 277 (1983) 1-42.

R.W.R. DARLING, E. PARDOUX. Backwards SDE with random terminal time and applications to semilinear elliptic PDE. The Annals of Probability, vol 25, No.3 (1997) 1135-1159.

R. DURRET. Stochastic Calculus: A Practical Introduction. Probability and Stochastics Series (1996) CRC Press.

N. EL KAROUI, L. MAZLIAK (Editores). Backward stochastic differential equations. Pitman Research Notes in Mathematics Series 364 (1997) Longman, Harlow.

C. EVANS. Partial Differential Equations. Graduate Studies in Mathema- tics, vol 19 (1998) American Mathematical Society. Providence, Rhode Island.

W.H. FLEMING, H.M. SONER. Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics (1993) Springer-Verlag, New-York.

F. DEN HOLLANDER, H. MAASEN. Stochastic Analysis. Mathematical Institute, University of Nijmegen (2000) The Netherlands.

M. KAC˘ . On distributions on certain Wiener functionals. Transactions of the American Mathematical Society vol 65 (1949) 1-13.

M. KAC˘ . On some connections between probability theory and differential and integral equations. Proc. 2 nd Berkeley Simp. on Math. Stat. & Probability. University of California Press (1951) 189-215.

O. KALLENBERG. Foundations of Modern Probability. Probability and its Applications (1991) Springer-Verlag, New York.

I. KARATZAS, S.E. SHREVE. Brownian Motion and Stochastic Calculus. Gradaute Texts in Mathematics 113. Segunda edicion (1991) Springer-Verlag, New York.

S. KARLIN, H.M. TAYLOR. A Second Course in Stochastic Processes (1981) Academic Press, New York.

M. KOBYLANSKI. Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability, vol 28, No. 2 (2000) 558-602.

H. KUNITA. Stochastic Flows and Stochastic Differential Equations (1990) Cambridge University Press.

J.P. LEPELTIER, J. SAN MART´IN. Backward stochastic differential equations with continuos coefficient. Statistics & Probability Letters 32 (1997) 425-430.

J.P. LEPELTIER, J. SAN MART´IN. On the existence or non-existence of solutions for certain backward stochastic differential equations. Bernoulli, vol 8, No. 1 (2002) 123-137.

P.L. LIONS. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I: The dynamic programming principle and applications. Comm. P.D.E. 8 (1983) 1101- 1174.

P.L. LIONS. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part II: Viscosity solutions and uniqueness. Comm. P.D.E. 8 (1983) 1229-1276.

P.L. LIONS. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part III. Nonlinear PDE and Appl., Seminaire du Coll ´ ege de France, ` vol V (1985) Pitman.

J. MA, J. YONG. Forward-Backward stochastic differential equations and their applications. Lecture Notes in Mathematics, 1702 (1999) Springer-Verlag, New York.

D. NUALART. Noncausal Stochastic Integrals and Calculus, Stochastic Analysis and Related Topics. Lecture Notes in Mathematics, 1316 Springer Verlag, Berlin (1986) 80-129.

B. ØKSENDAL. Stochastic Differential Equations: An Introduction with Applications. Universitext. Quinta edicion (1998) Springer-Verlag.

R.E.A.C. PARLEY, N. WIENER, A. ZYGMUND. Note on random functions. Math. Z. 37 (1933) 647-668.

E. PARDOUX. Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. Stochastic analysis and related topics VI (The Geilo Workshop, 1996), Editado por: L. Decreusefond, J. Gjerde, B. Øksendal; A.S. Ust ¨ unel. Progr. Probab., vol 42, Birkh ¨ auser Boston, Boston MA (1998) 79-127.

E. PARDOUX. Quelques methodes probabilistes pour les ´ equations aux d ´ eriv ´ ees partielles. ´ ESAIM Proceedings Actes du 30eme Congr ` es d’Analyse Num ` erique: CANum’98s ´ , vol 6 (1998) 91-109.

E. PARDOUX. Homogenization of Linear and Semilinear Second Order Parabolic PDEs with Periodic Coefficients: A Probabibilistic Approach. Journal of Functional Analysis 167 (1999) 498-520.

E. PARDOUX. BSDE’s weak convergence and homogenization of semi linear PDE’s. Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998). Editado por: F.H. Clarke, R.J. Stern; Kluwer Acad. Publ., Dordrecht (1999) 503-549.

E. PARDOUX, S. PENG. Adapted solution of a backward stochastic differential equation. Systems & Control Letters 14, No. 1 (1990) 55-61.

S. PENG. Backward SDE and related g-expectation. (Backward stochastic differential equations, editado por: N. El Karoui, L. Mazliak). Pitman Research Notes in Mathematics Series 364 (1997) Longman, Harlow.

P. PROTTER. Stochastic Integration and Differential Equations. Applications of Mathematics 21 (1990) Springer-Verlag, Berlin.

C. TUDOR. Procesos Estocasticos ´ . Aportaciones Matematicas (1997). Sociedad Matem ´ atica ´ Mexicana.

D. WILLIAMS. Probability with Martingales (1991). Cambridge Mathema-tical Textbooks.

Palavras-Chave #Matemáticas #Ecuaciones diferenciales #Análisis matemático #515.35 #backward stochastic differential equation #viscosity solution #semilinear partial differential equation
Tipo

info:eu-repo/semantics/book

info:eu-repo/semantics/acceptedVersion