1000 resultados para Factors (Algebra)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we are concerned with finding representations of the algebra of SU(3) vector and axial-vector charge densities at infinite momentum (the "current algebra") to describe the mesons, idealizing the real continua of multiparticle states as a series of discrete resonances of zero width. Such representations would describe the masses and quantum numbers of the mesons, the shapes of their Regge trajectories, their electromagnetic and weak form factors, and (approximately, through the PCAC hypothesis) pion emission or absorption amplitudes.

We assume that the mesons have internal degrees of freedom equivalent to being made of two quarks (one an antiquark) and look for models in which the mass is SU(3)-independent and the current is a sum of contributions from the individual quarks. Requiring that the current algebra, as well as conditions of relativistic invariance, be satisfied turns out to be very restrictive, and, in fact, no model has been found which satisfies all requirements and gives a reasonable mass spectrum. We show that using more general mass and current operators but keeping the same internal degrees of freedom will not make the problem any more solvable. In particular, in order for any two-quark solution to exist it must be possible to solve the "factorized SU(2) problem," in which the currents are isospin currents and are carried by only one of the component quarks (as in the K meson and its excited states).

In the free-quark model the currents at infinite momentum are found using a manifestly covariant formalism and are shown to satisfy the current algebra, but the mass spectrum is unrealistic. We then consider a pair of quarks bound by a potential, finding the current as a power series in 1/m where m is the quark mass. Here it is found impossible to satisfy the algebra and relativistic invariance with the type of potential tried, because the current contributions from the two quarks do not commute with each other to order 1/m3. However, it may be possible to solve the factorized SU(2) problem with this model.

The factorized problem can be solved exactly in the case where all mesons have the same mass, using a covariant formulation in terms of an internal Lorentz group. For a more realistic, nondegenerate mass there is difficulty in covariantly solving even the factorized problem; one model is described which almost works but appears to require particles of spacelike 4-momentum, which seem unphysical.

Although the search for a completely satisfactory model has been unsuccessful, the techniques used here might eventually reveal a working model. There is also a possibility of satisfying a weaker form of the current algebra with existing models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The algebraic formulas of 1.5 and 2.5 rank which can be applied to estimating +/- pi/2 type of phases for P2(1)2(1)2(1) space group were derived using the method of structure factor algebra. Both types of the formulas are satisfactory for two known crystal structures in estimating their +/- pi/2 type of phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marciniak and Sehgal showed that if u is a non-trivial bicyclic unit of an integral group ring then there is a bicyclic unit v such that u and v generate a non-abelian free group. A similar result does not hold for Bass cyclic units of infinite order based on non-central elements as some of them have finite order modulo the center. We prove a theorem that suggests that this is the only limitation to obtain a non-abelian free group from a given Bass cyclic unit. More precisely, we prove that if u is a Bass cyclic unit of an integral group ring ZG of a solvable and finite group G, such that u has infinite order modulo the center of U(ZG) and it is based on an element of prime order, then there is a non-abelian free group generated by a power of u and a power of a unit in ZG which is either a Bass cyclic unit or a bicyclic unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation derived hypotheses from the theories of Piaget, Bruner and Dienes regarding the effects of using Algebra Tiles and other manipulative materials to teach remedial algebra to community college students. The dependent variables measured were achievement and attitude towards mathematics. The Piagetian cognitive level of the students in the study was measured and used as a concomitant factor in the study.^ The population for the study was comprised of remedial algebra students at a large urban community college. The sample for the study consisted of 253 students enrolled in 10 sections of remedial algebra at three of the six campuses of the college. Pretests included administration of an achievement pre-measure, Aiken's Mathematics Attitude Inventory (MAI), and the Group Assessment of Logical Thinking (GALT). Posttest measures included a course final exam and a second administration of the MAI.^ The results of the GALT test revealed that 161 students (63.6%) were concrete operational, 65 (25.7%) were transitional, and 27 (10.7%) were formal operational. For the purpose of analyzing the data, the transitional and formal operational students were grouped together.^ Univariate factorial analyses of covariance ($\alpha$ =.05) were performed on the posttest of achievement (covariate = achievement pretest) and the MAI posttest (covariate = MAI pretest). The factors used in the analysis were method of teaching (manipulative vs. traditional) and cognitive level (concrete operational vs. transitional/formal operational).^ The analyses for achievement revealed a significant difference in favor of the manipulatives groups in the computations by campus. Significant differences were not noted in the analysis by individual instructors.^ The results for attitude towards mathematics showed a significant difference in favor of the manipulatives groups for the college-wide analysis and for one campus. The analysis by individual instructor was not significant. In addition, the college-wide analysis was significant in favor of the transitional/formal operational stage of cognitive development. However, support for this conclusion was not obtained in the analyses by campus or individual instructor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the relation of several predictors to high school dropout. The data, composed of records from a cohort of students ( N = 10,100) who entered ninth grade in 2001, were analyzed via logistic regression. The predictor variables were: (a) Algebra I grade, (b) Florida Comprehensive Assessment Test (FCAT) level, (c) language proficiency, (d) gender, (e) race/ethnicity, (f) Exceptional Student Education program membership, and (g) socio-economic status. The criterion was graduation status: graduated or dropped out. Algebra I grades were an important predictor of whether students drop out or graduate; students who failed this course were 4.1 times more likely to drop out than those who passed the course. Other significant predictors of high school dropout were language proficiency, Florida Comprehensive Assessment Test (FCAT) level, gender, and socio-economic status. The main focus of the study was on Algebra I as a predictor, but the study was not designed to discover the specific factors related to or underlying success in this course. Nevertheless, because Algebra I may be considered an important prerequisite for other major facets of the curriculum and because of its high relationship to high school dropout, a recommendation emerging from these findings is that districts address the issue of preventing failure in this course. Adequate support mechanisms for improving retention include addressing the students' readiness for enrolling in mathematics courses as well as curriculum improvements that enhance student readiness through such processes as remediation. Assuring that mathematics instruction is monitored and improved and that remedial programs are in place to facilitate content learning in all subjects for all students, but especially for those having limited English proficiency, are critical educational responsibilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study determined the levels of algebra problem solving skill at which worked examples promoted learning of further problem solving skill and reduction of cognitive load in college developmental algebra students. Problem solving skill was objectively measured as error production; cognitive load was subjectively measured as perceived mental effort. ^ Sixty-three Ss were pretested, received homework of worked examples or mass problem solving, and posttested. Univarate ANCOVA (covariate = previous grade) were performed on the practice and posttest data. The factors used in the analysis were practice strategy (worked examples vs. mass problem solving) and algebra problem solving skill (low vs. moderate vs. high). Students in the practice phase who studied worked examples exhibited (a) fewer errors and reduced cognitive load, at moderate skill; (b) neither fewer errors nor reduced cognitive load, at low skill; and (c) only reduced cognitive load, at high skill. In the posttest, only cognitive load was reduced. ^ The results suggested that worked examples be emphasized for developmental students with moderate problem solving skill. Areas for further research were discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a long history of debate around mathematics standards, reform efforts, and accountability. This research identified ways that national expectations and context drive local implementation of mathematics reform efforts and identified the external and internal factors that impact teachers’ acceptance or resistance to policy implementation at the local level. This research also adds to the body of knowledge about acceptance and resistance to policy implementation efforts. This case study involved the analysis of documents to provide a chronological perspective, assess the current state of the District’s mathematics reform, and determine the District’s readiness to implement the Common Core Curriculum. The school system in question has continued to struggle with meeting the needs of all students in Algebra 1. Therefore, the results of this case study will be useful to the District’s leaders as they include the compilation and analysis of a decade’s worth of data specific to Algebra 1.