971 resultados para FPGA, Spartan-3E


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This tutorial is designed to help new users become familiar with using the Spartan-3E board. The tutorial steps through the following: writing a small program in VHDL which carries out simple combinational logic; connecting the program inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board; and downloading the program to the Spartan-3E board using the Project Navigator software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This tutorial is designed to help new users become familiar with using the Spartan-3E board. The tutorial steps through: writing a small program in VHDL which carries out simple combinational logic; connecting the program inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board; downloading the program to the Spartan-3E board using version 14.7 of the Xilinx ISE; and simulating the program using the iSim Simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This tutorial is designed to help new users become familiar with using the PicoBlaze microcontroller with the Spartan-3E board. The tutorial gives a brief introduction to the PicoBlaze microcontroller, and then steps through the following: - Writing a small PicoBlaze assembly language (.psm) file, and stepping through the process of assembling the .psm file using KCPSM3; - Writing a top level VHDL module to connect the PicoBlaze microcontroller (KCPSM3 component) and the program ROM, and to connect the required input and output ports; - Connecting the top level module inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board; - Downloading the program to the Spartan-3E board using the Project Navigator software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This tutorial is designed to assist users who wish to use the LCD screen on the Spartan-3E board. In this tutorial, the PicoBlaze microcontroller is used to control the LCD. The tutorial is organised into three Parts. In Part A, code is written to display the message "Hello World" on the LCD. Part B demonstrates how to define and display custom characters. Finally, Part C shows how the display can be shifted and flashed. Shifting is done by using a delay in the main PicoBlaze program loop, while flashing is done using the PicoBlaze interrupt. The slider switches can be used to select the shifting direction, and to turn shifting and flashing on and off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy día vivimos en la sociedad de la tecnología, en la que la mayoría de las cosas cuentan con uno o varios procesadores y es necesario realizar cómputos para hacer más agradable la vida del ser humano. Esta necesidad nos ha brindado la posibilidad de asistir en la historia a un acontecimiento sin precedentes, en el que la cantidad de transistores era duplicada cada dos años, y con ello, mejorada la velocidad de cómputo (Moore, 1965). Tal acontecimiento nos ha llevado a la situación actual, en la que encontramos placas con la capacidad de los computadores de hace años, consumiendo muchísima menos energía y ocupando muchísimo menos espacio, aunque tales prestaciones quedan un poco escasas para lo que se requiere hoy día. De ahí surge la idea de comunicar placas que se complementan en aspectos en las que ambas se ven limitadas. En nuestro proyecto desarrollaremos una interfaz s oftware/hardware para facilitar la comunicación entre dos placas con distintas prestaciones, a saber, una Raspberry Pi modelo A 2012 y una FPGA Spartan XSA3S1000 con placa extendida XStend Board V3.0. Dicha comunicación se basará en el envío y recepción de bits en serie, y será la Raspberry Pi quien marque las fases de la comunicación. El proyecto se divide en dos partes: La primera parte consiste en el desarrollo de un módulo para el kernel de Linux, que se encarga de gestionar las entradas y salidas de datos de la Raspberry Pi cuando se realizan las pertinentes llamadas de write o read. Mediante el control de los GPIO y la gestión de las distintas señales, se realiza la primera fase de la comunicación. La segunda parte consiste en el desarrollo de un diseño en VHDL para la FPGA, mediante el cual se pueda gestionar la recepción, cómputo y posterior envío de bits, de forma que la Raspberry Pi pueda disponer de los datos una vez hayan sido calculados. Ambas partes han sido desarrolladas bajo licencias libres (GPL) para que estén disponibles a cualquier persona interesada en el desarrollo y que deseen su reutilización.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of semiconductor process and EDA tools technology, IC designers can integrate more functions. However, to reduce the demand of time-to-market and tackle the increasing complexity of SoC, the need of fast prototyping and testing is growing. Taking advantage of deep submicron technology, modern FPGAs provide a fast and low-cost prototyping with large logic resources and high performance. So the hardware is mapped onto an emulation platform based on FPGA that mimics the behaviour of SOC. In this paper we use FPGA as a system on chip which is then used for image compression by 2-D DCT respectively and proposed SoC for image compression using soft core Microblaze. The JPEG standard defines compression techniques for image data. As a consequence, it allows to store and transfer image data with considerably reduced demand for storage space and bandwidth. From the four processes provided in the JPEG standard, only one, the baseline process is widely used. Proposed SoC for JPEG compression has been implemented on FPGA Spartan-6 SP605 evaluation board using Xilinx platform studio, because field programmable gate array have reconfigurable hardware architecture. Hence the JPEG image with high speed and reduced size can be obtained at low risk and low power consumption of about 0.699W. The proposed SoC for image compression is evaluated at 83.33MHz on Xilinx Spartan-6 FPGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new field-programmable gate array (FPGA) identification generator circuit is introduced based on physically unclonable function (PUF) technology. The new identification generator is able to convert flip-flop delay path variations to unique n-bit digital identifiers (IDs), while requiring only a single slice per ID bit by using 1-bit ID cells formed as hard-macros. An exemplary 128-bit identification generator is implemented on ten Xilinx Spartan-6 FPGA devices. Experimental results show an uniqueness of 48.52%, and reliability of 92.41% over a 25°C to 70°C temperature range and 10% fluctuation in supply voltage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physically Unclonable Functions (PUFs), exploit inherent manufacturing variations and present a promising solution for hardware security. They can be used for key storage, authentication and ID generations. Low power cryptographic design is also very important for security applications. However, research to date on digital PUF designs, such as Arbiter PUFs and RO PUFs, is not very efficient. These PUF designs are difficult to implement on Field Programmable Gate Arrays (FPGAs) or consume many FPGA hardware resources. In previous work, a new and efficient PUF identification generator was presented for FPGA. The PUF identification generator is designed to fit in a single slice per response bit by using a 1-bit PUF identification generator cell formed as a hard-macro. In this work, we propose an ultra-compact PUF identification generator design. It is implemented on ten low-cost Xilinx Spartan-6 FPGA LX9 microboards. The resource utilization is only 2.23%, which, to the best of the authors' knowledge, is the most compact and robust FPGA-based PUF identification generator design reported to date. This PUF identification generator delivers a stable range of uniqueness of around 50% and good reliability between 85% and 100%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on a Field Programmable Gate Array (FPGA) implementation as well as prototyping for real-time testing of a low complexity high efficiency decimation filter processor which is deployed in conjunction with a custom built low-power jitter insensitive Continuous Time (CT) Sigma-Delta (Σ-Δ) Modulator to measure and assess its performance. The CT Σ-Δ modulator/decimation filter cascade can be used in integrated all-digital microphone interfaces for a variety of applications including mobile phone handsets, wireless handsets as well as other applications requiring all-digital microphones. The work reported here concentrates on the design and implementation as well as prototyping on a Xilinx Spartan 3 FPGA development system and real-time testing of the decimation processing part deploying All-Pass based structures to process the bit stream coming from CT Σ-Δ modulator hence measuring in real-time and fully assessing the modulator's performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic and Partial Reconfiguration (DPR) allows a system to be able to modify certain parts of itself during run-time. This feature gives rise to the capability of evolution: changing parts of the configuration according to the online evaluation of performance or other parameters. The evolution is achieved through a bio-inspired model in which the features of the system are identified as genes. The objective of the evolution may not be a single one; in this work, power consumption is taken into consideration, together with the quality of filtering, as the measure of performance, of a noisy image. Pareto optimality is applied to the evolutionary process, in order to find a representative set of optimal solutions as for performance and power consumption. The main contributions of this paper are: implementing an evolvable system on a low-power Spartan-6 FPGA included in a Wireless Sensor Network node and, by enabling the availability of a real measure of power consumption at run-time, achieving the capability of multi-objective evolution, that yields different optimal configurations, among which the selected one will depend on the relative “weights” of performance and power consumption.