990 resultados para Expressing Interferon-gamma
Resumo:
Keratinocyte apoptosis mediated by Fas/Fas ligand molecular interactions and subsequent caspase activation is believed to play an important role in the pathogenesis of atopic dermatitis (AD), in particular for the formation of spongiosis. To estimate epidermal caspase activation in normal and AD skin under in vivo conditions, we analysed caspase-3 cleavage by immunohistology. In normal skin as well as non-lesional AD skin, we detected caspase-3 cleavage in single cells of the basal layer. In contrast, in acute lesional AD skin, we not only obtained evidence for increased expression of cleaved caspase-3 in keratinocytes of the basal layer but also observed caspase-3 cleavage in one or more layers of the spinous cell layer, in particular in spongiotic areas. Short-term topical treatment of the skin lesions with tacrolimus or pimecrolimus abolished the expression of cleaved caspase-3 in the spinous layer. Moreover, epidermal caspase-3 cleavage correlated with the numbers of dermal interferon-gamma (IFN-gamma)-expressing CD4+ and CD8+ lymphocytes in skin lesions of AD patients, supporting the view that IFN-gamma is important for the activation of proapoptotic pathways in keratinocytes. This is also confirmed by the observation of increased Fas expression on keratinocytes in acute AD lesions that was markedly reduced following topical calcineurin inhibitor treatment. These data suggest that caspase-3 cleavage in the spinous layer of the epidermis is a pathologic event contributing to spongiosis formation in AD, whereas cleavage of caspase-3 in basal cells might represent a physiologic mechanism within the process of epidermal renewal.
Resumo:
Perforin (pfp) and interferon-gamma (IFN-gamma) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-gamma were significantly less proficient than pfp- or IFN-gamma -deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-gamma -deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-gamma appeared to play an early role in protection from metastasis, Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1(+) T cells, Herein, both pfp and IFN-gamma played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells, Further analysis demonstrated that IFN-gamma, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-gamma, and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice, (C) 2001 by The American Society of Hematology.
Resumo:
Background Kaposi sarcoma (KS) is associated with human herpesvirus 8 (HHV-8). The cutaneous immune response in this tumour is not well established and a better understanding is necessary. Objectives To evaluate the HHV-8 expression and immune response in cutaneous lesions of classic KS (CKS) and AIDS-associated KS (AIDS-KS). Methods We performed a quantitative immunohistochemical study of cells expressing HHV-8 latency-associated nuclear antigen (LANA), CD4, CD8 and interferon (IFN)-gamma in skin lesions from patients with CKS and AIDS-KS (with or without highly active antiretroviral therapy, HAART). Results CKS showed higher LANA expression compared with AIDS-KS, regardless of HAART. We also found higher LANA expression in nodules compared with patch/plaque lesions. The tissue CD4+ cell proportion was lower in AIDS-KS patients without HAART than in patients with CKS. In CKS lesions, CD4+ and CD8+ cells expressed IFN-gamma, as shown by double immunostaining. AIDS-KS presented low numbers of IFN-gamma-expressing cells. CD8+ cell numbers were similar in all groups, which appeared unrelated to the clinical or epidemiological type of KS. Conclusions. Our quantitative data on the pattern of KS lesions in selected groups of patients, as shown by in situ immune response, demonstrated a CD4+ T-cell involvement associated with IFN-gamma, an environment of immune response-modified human immunodeficiency virus (HIV) infection. In our sample, the promotion of KS in patients without HIV appears to be related to higher HHV-8 load or virulence than in those with AIDS. This higher resistance may be explained by a sustained immune response against this herpesvirus, that is only partially restored but effective after HAART.
Resumo:
Keratinocytes expressing the human papillomavirus (HPV) type 16 E7 protein, as a transgene driven by the K14 promoter, form a murine model of HPV-mediated epithelial cancers in humans. Our previous studies have shown that K14E7 transgenic skin grafts onto syngeneic mice are not susceptible to immune destruction despite the demonstrated presence of a strong, systemic CTL response directed against the E7 protein. Consistent with this finding, we now show that cultured, E7 transgenic keratinocytes (KC) express comparable endogenous levels of E7 protein to a range of CTL-sensitive E7-expressing cell lines but are not susceptible to CTL-mediated lysis in vitro . E7 transgenic and non-transgenic KC are susceptible to conventional mechanisms of CTL-mediated lysis, including perforin and Fas/FasL interaction when an excess of exogenous peptide is provided. The concentration of exogenous peptide required to render a cell susceptible to lysis was similar between KC and other conventional CTL targets (e.g. EL-4), despite large differences in H-2D(b) expression at the cell surface. Furthermore, exposure of KC to IFN-gamma increased H-2D(b) expression, but did not substantially alter the exogenous peptide concentration required to sensitize cells for half maximal lysis. In contrast, the lytic sensitivity of transgenic KC expressing endogenous E7 is modestly improved by exposure to IFN-gamma. Thus, failure of CTL to eliminate KC expressing endogenous E7, and by inference squamous tumours expressing E7, may reflect the need for a sustained, local inflammatory environment during the immune effector phase.
Resumo:
The human Me14-D12 antigen is a cell surface glycoprotein regulated by interferon-gamma (IFN-gamma) on tumor cell lines of neuroectodermal origin. It consists of two non-convalently linked subunits with apparent mol. wt sizes of 33,000 and 38,000. Here we describe the molecular cloning of a genomic probe for the Me14-D12 gene using the gene transfer approach. Mouse Ltk- cells were stably cotransfected with human genomic DNA and the Herpes Simplex virus thymidine kinase (TK) gene. Primary and secondary transfectants expressing the Me14-D12 antigen were isolated after selection in HAT medium by repeated sorting on a fluorescence activated cell sorter (FACS). A recombinant phage harboring a 14.3 kb insert of human DNA was isolated from a genomic library made from a positive secondary transfectant cell line. A specific probe derived from the phage DNA insert allowed the identification of two mRNAs of 3.5 kb and 2.2 kb in primary and secondary L cell transfectants, as well as in human melanoma cell lines expressing the Me14-D12 antigen. The regulation of Me14-D12 antigen by INF-gamma was retained in the L cell transfectants and could be detected both at the level of protein and mRNA expression.
Resumo:
Type I (alpha, beta) and type II (gamma) interferons (IFNs) can restrict the growth of many cell types. INF-stimulated gene transcription, a key early event in IFN response, acts through the Janus kinase-signal transducers and activators of transcription pathway, in which both IFN-alpha and IFN-gamma activate the transcription factor Stat1. A cell line lacking Stat1 (U3A) was not growth-arrested by IFN-alpha or IFN-gamma, and experiments were carried out with U3A cells permanently expressing normal or various mutant forms of Stat1 protein. Only cells in which complete Stat1 activity was available (Stat1alpha) were growth-inhibited by IFN-gamma. A mutant that supports 20-30% normal transcription did not cause growth restraint. In contrast, IFN-alpha growth restraint was imposed by cells producing Stat1beta, which lacks transcriptional activation potential. This parallels earlier results showing the truncated Stat1 can function in IFN-alpha gene activation. In addition to experiments on long-term cultured cells, we also found that wild-type primary mouse embryonic fibroblasts were inhibited by IFNs, but fibroblasts from Stat1-deficient mouse embryos were not inhibited by IFNs.
Resumo:
Signaling by interferon gamma (IFN-gamma) requires two structurally related cell surface proteins: a ligand-binding polypeptide, known as the IFN-gamma receptor (IFN-gamma R), and an accessory factor. However, it is not known whether IFN-gamma forms a ternary complex with the IFN-gamma R and accessory factor to initiate signaling. Here we demonstrate complex formation between IFN-gamma and the two proteins, both in solution and at the cell surface. We observe complexes containing ligand, two molecules of IFN-gamma R (designated the IFN-gamma R alpha chain), and one or two molecules of accessory factor (designated the IFN-gamma R beta chain). Transfected cells expressing both IFN-gamma R chains bind IFN-gamma with higher affinity than do cells expressing alpha chain alone. Anti-beta-chain antibodies prevent the beta chain from participating in the ligand-receptor complex, reduce the affinity for IFN-gamma, and block signaling. Soluble alpha- or beta-chain extracellular domains also inhibit function. These results demonstrate that IFN-gamma signals via a high-affinity multisubunit complex that contains two types of receptor chain and suggest a potential approach to inhibiting specific actions of IFN-gamma by blocking the association of receptor subunits.
Resumo:
Isolation of Leishmania parasite and species identification are important for confirmation and to help define the epidemiology of the leishmaniasis. Mice are often used to isolate pathogens, but the most common mouse strains are resistant to infection with parasites from the Leishmania (Viannia) subgenus. In this study we tested the inoculation of interferon gamma knockout (IFNγ KO) mice with biopsy macerates from Leishmania-infected patients to increase the possibility of isolating parasites. Biopsies from twenty five patients with clinical signs of leishmaniasis were taken and tested for the presence of parasites. Immunohistochemical assay (IHC) and conventional histopathology detected the parasite in 88% and 83% of the patients, respectively. Leishmania sp. were isolated in biopsy macerates from 52% of the patients by culture in Grace's insect medium, but 13% of isolates were lost due to contamination. Inoculation of macerates in IFNγ KO mice provides isolation of parasites in 31.8% of the biopsies. Most isolates belong to L. (Viannia) subgenus, as confirmed by PCR, except one that belongs to L. (Leishmania) subgenus. Our preliminary results support the use of IFNγ KO mice to improve the possibility to isolate New World Leishmania species.
Resumo:
The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perform (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
Resumo:
Epithelial malignancies are common in immunosuppressed individuals and the general population. However the mechanisms by which the adaptive immune system can eliminate immunogenic epithelial cells remain undefined. The aim of this project was to determine the effector molecules required for induction of apoptosis in murine epidermal keratinocytes (MEKs) in vitro and in vivo. HPV16E7-specific CTL lines and T cell receptor transgenic (E7TCRtg) effector cells were obtained from wild type (wt)-C57 and syngeneic mice rendered functionally inactive for perforin (Pfp), interferon-g (IFN-g) or FasL. CTLs or E7TCRtg spleen cells were co-cultured with primary MEKs in vitro or transferred into skin graft recipients. Inhibition of colony formation and skin graft rejection were used as indicators of T cell:KC interaction. Wt E7-specific CTLs and CTLs deficient in perforin, FasL or IFN-g produced mean reductions in colony formation of 67% (62.4–71.3%), 72% (71.1–72%), 76% (73–78%) and 21.5% (14– 34%) respectively. Wt, perforin deficient or FasL deficient CTLs all induced rejection of skin grafts (wt: 6/12; Pfp: 9/15; FasL: 3/13 survival). Transfer and immunisation of wt E7TCRtg spleen cells induces rejection of 50% of grafts (4/8 survival). In contrast, perforin or IFN-g deficient E7TCRtg failed to induce graft rejection (5/6; 4/4 survival). FasL deficient E7TCRtg induced nonspecific rejection of grafts (E7- 2/6 survival; C57- 4/7 survival). Therefore IFN-g production by CTL is necessary and sufficient in vitro and in vivo to kill epithelial cells which express a nonself antigen. Assessment of immunotherapies directed against epithelial tissues may be more effectively achieved by assaying the amount of IFN-g production by CD8 T cells, and the number and affinity of those cells, in conjunction with quantitation of perforin mediated effects in short term assays.
Resumo:
Newly hatched chickens are highly susceptible to infection by opportunistic pathogens during the first 1 or 2 weeks of life, The use of cytokines as therapeutic agents has been studied in animal models as well as in immunosuppressed patients, This approach has become more feasible in livestock animals, in particular poultry, with the recent cloning of cytokine genes and the development of new technologies, such as live delivery vectors, We have recently cloned the gene for chicken interferon-gamma (Ch-IFN-gamma), Poly-HIS-tagged recombinant Ch-IFN-gamma was expressed in Escherichia coil, was purified by Ni chromatography, and was found to be stable at 4 degrees C and an ambient temperature for at least several months and Several weeks, respectively, Ch-IFN-gamma was capable of protecting chick fibroblasts from undergoing virus-mediated lysis, induced nitrite secretion from chicken macrophages in vitro, and enhanced MHC class II expression on macrophages, Administration of recombinant Ch-IFN-gamma to chickens resulted in enhanced weight gain over a 12-day period, Furthermore, the therapeutic potential of Ch-IFN-gamma was assessed using a coccidial challenge model, Birds were treated with Ch-IFN-gamma or a diluent control and then infected with Eimeria acervulina. Infected birds treated with Ch-IFN-gamma showed improved weight gain relative to noninfected birds, The ability of Ch-IFN-gamma to enhance weight gain in the face of coccidial infection makes it an excellent candidate as a therapeutic agent.
Resumo:
Human T-lymphotropic virus type 1 (HTLV-1) is the agent of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which may Occur in > 5% of patients during their lifetime. HTLV-1-infection causes disturbances in the immune system, and the viral load may also play an important role in the pathogenesis of HAM/TSP. Some cytokines are involved in the pathogenesis of this disorder. We have determined IL-2, IL-4, IL-10, IL-12 p70, IFN-gamma and TNF-alpha production among HTLV-1-infected subjects from our HTLV-out Clinic in Institute of Infectious `Emilio Ribas` in Sao Paulo city, Brazil. PBMC obtained from healthy controls (n = 32), asymptomatic HTLV-1 carriers (n = 68) and HAM/TSP patients (n = 44) were grown in the absence and in the presence of phytohaemagglutinin (PHA), and the supernatants` fluids were measured for cytokines production. IL-2 levels were increased in the a-symptomatic HTLV-1 carriers, and IFN-gamma was increased in both groups of patients (asymptomatic HTLV-1 carriers and more significantly among HAM/TSP patients). IL-4, IL-10, TNF-alpha and IL-12 p70 levels were not significantly increased on both groups of patients, as compared with controls. The major finding Of this Study is that IFN-gamma was an important cytokine for the HAM/TSP pathogenesis. Therefore, immune modulation of IFN-gamma may be critical to treat of HAM/TSP patients.
Resumo:
Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
Resumo:
Cytokines play important roles in the pathogenesis of lipodystrophy syndrome (LS). Single nucleotide polymorphisms (SNPs) at positions -607(C/A) and -137(C/G) in the promoter region of the interleukin-18 (IL-18) gene and at position +874(T/A) of the interferon-gamma (IFN-gamma) gene are related to the expression of these cytokines. To examine whether IL-18 and IFN-gamma polymorphisms are associated with LS, these SNPs were genotyped in 88 human immunodeficiency virus (HIV)-infected patients presenting LS, 79 HIV-infected without LS, and 133 healthy controls. The -607A allele, -607AA genotype, and -137G/-607A and -137C/-607A haplotypes in the IL-18 gene were over-represented in HIV patients presenting LS. The -137G/-607C haplotype was associated with protection against LS. These results indicate that the -607(C/A) SNP is associated with LS development in HIV-infected patients.