998 resultados para Exciton emission
Resumo:
Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H 25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices. © 2013 AIP Publishing LLC.
Resumo:
Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots. Exciton and biexciton emissions, whose photoluminescence intensities have linear and quadratic excitation power dependences, respectively, are identified. Under pulsed laser excitation, the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed, which is a clear evidence of single photon emission.
Resumo:
GaNAs/GaAs single quantum wells (SQWs) and dilute GaNAs bulk grown by molecular beam epitaxy(MBE) were studied by photoluminescence (PL), selectively-excited PL, and time-resolved PL. Exciton localization and delocalization were investigated in detail. Under short pulse laser excitation, the delocalization exciton emission was revealed in GaNAs/GaAs SQWs. It exhibits quite different optical properties from N-related localized states. In dilute GaNAs bulk, a transition of alloy band related recombination was observed by measuring the PL dependence on temperature and excitation intensity and time-resolved PL, as well. This alloy-related transition presents intrinsic optical properties. These results are very important for realizing the abnomal features of III-V-N semiconductors.
Resumo:
Exciton localization in Te-rich ZnSTe epilayers has been studied by photoluminescence (PL) and time-resolved PL. The sulfur-related exciton emission is found to dominate the radiative recombination at low temperature and is shifted to the low energy with the increase of S concentration. By measuring the PL dependence on temperature and by analyzing the PL decay process, we have clarified the localization nature of the sulfur-related exciton emission. Furthermore, the difference of the localization effect in Te- and S-rich ZnSTe is also compared and discussed. © 2005 American Institute of Physics.
Resumo:
The pressure behavior of the ultraviolet (UV) and green emission bands in ZnO tetrapod-like micro-rods has been investigated at 300 and 70 K, respectively. The pressure coefficient of the UV band at 300 K is 24.5 meV/GPa, consistent with that of the band gap of bulk ZnO. However, the pressure coefficient of the green band is 25 meV/GPa, far larger than previous literature reports. The green band in this work originates from Cu-related emission, as confirmed by the fine structure observed in the spectra at 10 K. The pressure coefficients of four phonon replicas of the free exciton emission (FX) at 70 K are 21.0, 20.2, 19.8, and 19.3 meV/GPa, respectively. The energy shift rate of the FX emission and the LO phonon energies is then determined to be 21.4 and 0.55 meV/GPa. The pressure coefficient of the neutral donor bound exciton ((DX)-X-0) transition is 20.5 meV/GPa, only 4% smaller than that of FX. This confirms that the (DX)-X-0 emission corresponds to excitons bound to neutral shallow donors. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We have systematically investigated the optical properties of isoelectronic centers (IECs) of ZnSTe in the whole composition range from ZnS to ZnTe. In the S-rich ZnSTe photoluminescence is dominated by Te-bound excitons, while in Te-rich side, S-related bound exciton emission dominates the radiative recombination. Localization nature of IEC bound exciton emissions in both S-rich and Te-rich side ZnSTe alloys are studied in detail. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have studied exciton localization and delocalization effect in GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) and timeresolved PL measurements. Studied results suggest that, at low temperature and under a conventional CW excitation, measured PL spectra were dominated by localized exciton (LE) emission caused by potential fluctuations in GaNAs layer. However, under short pulse laser excitation, it is different. An extra high-energy PL peak comes out from GaNAs/GaAs QWs and dominates the PL spectra under high excitation and/or at high temperature. By investigation, we have attributed the new PL peak to the recombination of delocalized excitons in QWs. This recombination process competes with the localized exciton emission, which, we believe, constitutes the "S-shaped" temperature-dependent emission shift often reported in ternary nitrides of InGaN and AlGaN in the literature.
Resumo:
Oleate-capped ZnO:MgO nanocrystals have been synthesized that are soluble in nonpolar solvents and which emit strongly in the visible region (450−600 nm) on excitation by UV radiation. The visible emission involves recombination of trap states of the nanocrystalline ZnO core and has a higher quantum yield than the band gap UV exciton emission. The spectrally resolved dynamics of the trap states have been investigated by time-resolved emission spectroscopy. The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, and with efficiencies that depend on the occupancy of the trap density of states.
Resumo:
We present photoluminescence and reflectance spectra of GaAs/Al-x Ga-1-x As quantum wells in a magnetic field for the Faraday geometry. The photoluminescence peaks recorded are among the most intense and narrow reported to date. This has allowed us to study the behavior of closely spaced bound exciton lines under a magnetic field. Several new features including magnetic field induced splitting of the bound exciton emission peaks are reported.
Resumo:
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred 0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Low-temperature time-resolved photoluminescence spectroscopy is used to probe the dynamics of photoexcited carriers in single InP nanowires. At early times after pulsed excitation, the photoluminescence line shape displays a characteristic broadening, consistent with emission from a degenerate, high-density electron-hole plasma. As the electron-hole plasma cools and the carrier density decreases, the emission rapidly converges toward a relatively narrow band consistent with free exciton emission from the InP nanowire. The free excitons in these single InP nanowires exhibit recombination lifetimes closely approaching that measured in a high-quality epilayer, suggesting that in these InP nanowires, electrons and holes are relatively insensitive to surface states. This results in higher quantum efficiencies than other single-nanowire systems as well as significant state-filling and band gap renormalization, which is observed at high electron-hole carrier densities.
Resumo:
We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier-phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.
Resumo:
Electrically driven single photon source based on single InAs quantum dot (QDs) is demonstrated. The device contains InAs QDs within a planar cavity formed between a bottom AlGaAs/GaAs distributed Bragg reflector (DBR) and a surface GaAs-air interface. The device is characterized by I-V curve and electroluminescence, and a single sharp exciton emission line at 966nm is observed. Hanbury Brown and Twiss (HBT) correlation measurements demonstrate single photon emission with suppression of multiphoton emission to below 45% at 80K
Resumo:
We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55 mu m at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60 K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20 K.
Resumo:
High-density and uniform well-aligned ZnO sub-micron rods are synthesized on the silicon substrate over a large area. The morphology, and structure of the ZnO sub-micron rods are investigated by x-ray diffraction, transmission electron microscopy and Raman spectra. It is found that the ZnO sub-micron rods are of high crystal quality with the diameter in the range of 400-600 nm and the length of several micrometres long. The optical properties were studied bill photoluminescence spectra. The results show that the intensity of the ultraviolet emission at 3.3 eV is rather high, meanwhile the deep level transition centred at about 2.38 eV is weak. The free exciton emission could also be observed at low, temperature, which implies the high optical quality of the ZnO sub-micron rods. This growth technique provides one effective way to fabricate the high crystal quality ZnO nanowires array, which is very important for potential applications in the new-type optoelectronic nanodevices.