966 resultados para Everted intestinal sac model
Resumo:
Praziquantel has been shown to be highly effective against all known species of Schistosoma infecting humans. Spherical nanoparticles made of poly(D,L-lactide-co-glycolide) acid with controlled size were designed as drug carriers. Praziquantel, a hydrophobic drug, was entrapped into the polymeric nanoparticles with 30% (w/w) of theoretical loading. The nanoparticles size was approximately of 350 nm with 66% of encapsulation efficiency. The everted gut sac model shows to be efficient to evaluate the drug permeation through the intestinal membrane. The results show that free praziquantel presents 4-fold times more permeation than praziquantel-loaded PLGA nanoparticles and physical mixture. For this drug, in special, this result can be interesting, since the nanoparticulate system can behave as a drug reservoir and/or to have a more localized effect in intestinal membrane for a prolonged period of time, since great amounts of parasites can be usually found in the mesenteric veins.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study was to prepare and characterize coated pellets for controlled drug delivery. The influence of chitosan (CS) in pellets was evaluated by swelling, in vitro drug release and intestinal permeation assays. Pellets were coated with an enteric polymer, Kollicoat (R) MAE 30 DP, in a fluidized-bed apparatus and the coating formulations were based on a factorial design. Metronidazole (MT) released from coated and uncoated pellets were assessed by dissolution method using Apparatus I. Intestinal permeation was evaluated by everted intestinal sac model in rats, used to study the absorption of MT from coated pellets containing CS or not through the intestinal tissue. Although the film coating avoided drug dissolution in gastric medium, the overall drug release and intestinal permeation were dependent on the presence of CS. Thus, pellets containing CS show potential as a system for controlled drug delivery. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The first part of the research project of the Co-Advisorship Ph.D Thesis was aimed to select the best Bifidobacterium longum strains suitable to set the basis of our study. We were looking for strains with the abilities to colonize the intestinal mucosa and with good adhesion capacities, so that we can test these strains to investigate their ability to induce apoptosis in “damaged” intestinal cells. Adhesion and apoptosis are the two process that we want to study to better understand the role of an adhesion protein that we have previously identified and that have top scores homologies with the recent serpin encoding gene identified in B. longum by Nestlè researchers. Bifidobacterium longum is a probiotic, known for its beneficial effects to the human gut and even for its immunomodulatory and antitumor activities. Recently, many studies have stressed out the intimate relation between probiotic bacteria and the GIT mucosa and their influence on human cellular homeostasis. We focused on the apoptotic deletion of cancer cells induced by B. longum. This has been valued in vitro, performing the incubation of three B.longum strains with enterocyte-like Caco- 2 cells, to evidence DNA fragmentation, a cornerstone of apoptosis. The three strains tested were defined for their adhesion properties using adhesion and autoaggregation assays. These features are considered necessary to select a probiotic strain. The three strains named B12, B18 and B2990 resulted respectively: “strong adherent”, “adherent” and “non adherent”. Then, bacteria were incubated with Caco-2 cells to investigate apoptotic deletion. Cocultures of Caco-2 cells with B. longum resulted positive in DNA fragmentation test, only when adherent strains were used (B12 and B18). These results indicate that the interaction with adherent B. longum can induce apoptotic deletion of Caco-2 cells, suggesting a role in cellular homeostasis of the gastrointestinal tract and in restoring the ecology of damaged colon tissues. These results were used to keep on researching and the strains tested were used as recipient of recombinant techniques aimed to originate new B.longum strains with enhanced capacity of apoptotic induction in “damaged” intestinal cells. To achieve this new goal it was decided to clone the serpin encoding gene of B. longum, so that we can understand its role in adhesion and apoptosis induction. Bifidobacterium longum has immunostimulant activity that in vitro can lead to apoptotic response of Caco-2 cell line. It secretes a hypothetical eukaryotic type serpin protein, which could be involved in this kind of deletion of damaged cells. We had previously characterised a protein that has homologies with the hypothetical serpin of B. longum (DD087853). In order to create Bifidobacterium serpin transformants, a B. longum cosmid library was screened with a PCR protocol using specific primers for serpin gene. After fragment extraction, the insert named S1 was sub-cloned into pRM2, an Escherichia coli - Bifidobacterium shuttle vector, to construct pRM3. Several protocols for B. longum transformation were performed and the best efficiency was obtained using MRS medium and raffinose. Finally bacterial cell supernatants were tested in a dotblot assay to detect antigens presence against anti-antitrypsin polyclonal antibody. The best signal was produced by one starin that has been renamed B. longum BLKS 7. Our research study was aimed to generate transformants able to over express serpin encoding gene, so that we can have the tools for a further study on bacterial apoptotic induction of Caco-2 cell line. After that we have originated new trasformants the next step to do was to test transformants abilities when exposed to an intestinal cell model. In fact, this part of the project was achieved in the Department of Biochemistry of the Medical Faculty of the University of Maribor, guest of the abroad supervisor of the Co-Advisorship Doctoral Thesis: Prof. Avrelija Cencic. In this study we examined the probiotic ability of some bacterial strains using intestinal cells from a 6 years old pig. The use of intestinal mammalian cells is essential to study this symbiosis and a functional cell model mimics a polarised epithelium in which enterocytes are separated by tight junctions. In this list of strains we have included the Bifidobacterium longum BKS7 transformant strain that we have previously originated; in order to compare its abilities. B. longum B12 wild type and B. longum BKS7 transformant and eight Lactobacillus strains of different sources were co-cultured with porcine small intestine epithelial cells (PSI C1) and porcine blood monocytes (PoM2) in Transwell filter inserts. The strains, including Lb. gasseri, Lb. fermentum, Lb. reuterii, Lb. plantarum and unidentified Lactobacillus from kenyan maasai milk and tanzanian coffee, were assayed for activation of cell lines, measuring nitric oxide by Griess reaction, H202 by tetramethylbenzidine reaction and O2 - by cytochrome C reduction. Cytotoxic effect by crystal violet staining and induction on metabolic activity by MTT cell proliferation assay were tested too. Transepithelial electrical resistance (TER) of polarised PSI C1 was measured during 48 hours co-culture. TER, used to observe epithelium permeability, decrease during pathogenesis and tissue becomes permeable to ion passive flow lowering epithelial barrier function. Probiotics can prevent or restore increased permeability. Lastly, dot-blot was achieved against Interleukin-6 of treated cells supernatants. The metabolic activity of PoM2 and PSI C1 increased slightly after co-culture not affecting mitochondrial functions. No strain was cytotoxic over PSI C1 and PoM2 and no cell activation was observed, as measured by the release of NO2, H202 and O2 - by PoM2 and PSI C1. During coculture TER of polarised PSI C1 was two-fold higher comparing with constant TER (~3000 ) of untreated cells. TER raise generated by bacteria maintains a low permeability of the epithelium. During treatment Interleukin-6 was detected in cell supernatants at several time points, confirming immunostimulant activity. All results were obtained using Lactobacillus paracasei Shirota e Carnobacterium divergens as controls. In conclusion we can state that both the list of putative probiotic bacteria and our new transformant strain of B. longum are not harmful when exposed to intestinal cells and could be selected as probiotics, because can strengthen epithelial barrier function and stimulate nonspecific immunity of intestinal cells on a pig cell model. Indeed, we have found out that none of the strains tested that have good adhesion abilities presents citotoxicity to the intestinal cells and that non of the strains tested can induce cell lines to produce high level of ROS, neither NO2. Moreover we have assayed even the capacity of producing certain citokynes that are correlated with immune response. The detection of Interleukin-6 was assayed in all our samples, including B.longum transformant BKS 7 strain, this result indicates that these bacteria can induce a non specific immune response in the intestinal cells. In fact, when we assayed the presence of Interferon-gamma in cells supernatant after bacterial exposure, we have no positive signals, that means that there is no activation of a specific immune response, thus confirming that these bacteria are not recognize as pathogen by the intestinal cells and are certainly not harmful for intestinal cells. The most important result is the measure of Trans Epithelial Electric Resistance that have shown how the intestinal barrier function get strengthen when cells are exposed to bacteria, due to a reduction of the epithelium permeability. We have now a new strain of B. longum that will be used for further studies above the mechanism of apoptotic induction to “damaged cells” and above the process of “restoring ecology”. This strain will be the basis to originate new transformant strains for Serpin encoding gene that must have better performance and shall be used one day even in clinical cases as in “gene therapy” for cancer treatment and prevention.
Resumo:
ZusammenfassungDie Sekretion von Arzneistoffen aus Darmzellen zurück ins Darmlumen, die durch intestinale Transporter wie P-Glykoprotein (P-GP) vermittelt wird, stellt eine bekannte Quelle für unvollständige und variable Bioverfügbarkeiten und für Interaktionen mit anderen Arzneimitteln und Nahrungsbestandteilen dar. Dennoch liegen bisher keine Veröffentlichungen vor, die sich mit daraus resultierenden Konsequenzen für die Entwicklung neuer peroraler Darreichungsformen befassen. Ziel der vorliegenden Arbeit war es, deutlich zu machen, dass dem Auftreten von intestinalen Sekretionsphänomenen bei der Entwicklung von Retardarzneimitteln Rechnung getragen werden muss.Dazu wurden effektive Permeabilitäten für den Modellarzneistoff Talinolol in unterschiedlichen Darmabschnitten anhand eines Rattendarmperfusionsmodells bestimmt.Des weiteren wurde eine Retardformulierung für den Modellarzneistoff Talinolol entwickelt. Dabei wurde gezeigt, dass die Verwendung unterschiedlicher Puffer als Wirkstofffreisetzungmedien zur Ausbildung unterschiedlicher Talinolol-Kristallstrukturen führt.Die neu entwickelten Retardmatrixtabletten wurden mit Hilfe des Pharmakokinetik-Computersoftwareprogrammes Gastro Plus® evaluiert. Das Zusammenspiel von verlangsamter Wirkstofffreigabe aus der Arzneiform und intestinaler Sekretion führte zu einer deutlich verringerten Bioverfügbarkeit der Modellsubstanz Talinolol aus der Retardformulierung im Vergleich zu schnellfreisetzenden Arzneiformen.Daher sollte der Einfluß intestinaler sekretorischer Transporter wie P-GP bei der Entwicklung von Retardarzneiformen unbedingt berücksichtigt werden.
Resumo:
Intestinal Mucositis is inflammation and/or ulceration of mucosa of the gastrointestinal tract caused by anticancer therapies. Histologically, villous atrophy, damage to enterocytes and infiltration of inflammatory cells. Methotrexate (MTX) is a compound that depletes dihydrofolate pools and is widely used in the treatment of leukemia and other malignancies. The aim of this study was to evaluate the effect of Olmesartan (OLM), an angiotensin II receptor antagonist, on an Intestinal Mucositis Model (IMM) induced by MTX in Wistar rats. IMM was induced via intraperitoneal (i.p.) administration of MTX (7 mg/kg) for three consecutive days. The animals were pretreated with oral OLM at 0.5, 1 or 5 mg/kg or with vehicle 30 min prior to exposure to MTX, for three days. Small intestinal (duodenum, jejunum and ileum) homogenates were assayed for levels of the IL-1β, IL-10 and TNF-α cytokines, malondialdehyde and myeloperoxidase activity. Additionally, immunohistochemical analyses of MMP-2, MMP-9, COX-2, RANK/RANKL and SOCS-1 and confocal microscopy analysis of SOCS-1 expression were performed. Treatment with MTX+OLM (5 mg/kg) resulted in a reduction of mucosal inflammatory infiltration, ulcerations, vasodilatation and hemorrhagic areas (p<0.05) as well as reduced concentrations of MPO (p<0.001) and the pro-inflammatory cytokines IL-1β and TNF-α (p<0.01), and increase antiinflammatory cytosine IL-10 (p,0.05). Additionally, the combined treatment reduced expression of MMP-2, MMP-9, COX-2, RANK and RANKL (p<0.05) and increased cytoplasmic expression of SOCS-1 (p<0.05). Our findings confirm the involvement of OLM in reducing the inflammatory response through increased immunosuppressive signaling in an IMM. We also suggest that the beneficial effect of Olmesartan treatment is specifically exerted during the damage through blocking inflammatory cytosines.
Resumo:
Gastrointestinal hormones such as cholecystokinin (CCK), glucagon like peptide 1 (GLP-1), and peptide YY (PYY) play an important role in suppressing hunger and controlling food intake. These satiety hormones are secreted from enteroendocrine cells present throughout the intestinal tract. The intestinal secretin tumor cell line (STC-1) possesses many features of native intestinal enteroendocrine cells. As such, STC-1 cells are routinely used in screening platforms to identify foods or compounds that modulate secretion of gastrointestinal hormones in vitro. This chapter describes this intestinal cell model focussing on it’s applications, advantages and limitations. A general protocol is provided for challenging STC-1 cells with test compounds.
Resumo:
Noradrenaline was found to significantly stimulate fluid and Na absorption across everted sacs of rat jejunum. Of a number of a1, and 2-adrenoceptor antagonists tested only prazosin significantly inhibited the stimulant effect of noradrenaline and further experiments revealed an antiabsorptive effect of prazosin alone. Theophylline reduced jejunal fluid and Na absorption and this effect was not reversed by 2-adrenoceptor stimulation in contrast to previous findings in vivo. Evidence suggests the everted sac preparation is not appropriate to the study of intestinal fluid and electrolyte transport. The investigation of Jejunal ion transport in vitro was continued using an Ussing chamber preparation. Selective 2-adrenoceptor stimulation was found to depress electrogenic anion secretion, as neurotoxin tetrodotoxin indicated that this was a direct epithelial effect. 2-adrenoceptor agonists have considerable therapeutic value as antisecretory agents and the model of rat jejunum in vitro represents a convenient experimental model for research in this area. The selective 2-adrenoceptor antagonist ICI 118551 decreased basal SCC and inhibited increases in SCC in response to isoprenaline or salbutamol indicating the presence of a 2-adrenoceptor mechanism mediating both secretory tone and increases in secretory processes. Many intestinal secretagogues elicit electrolyte secretion via the stimulation of intramural secretory nervous pathways. If these pathways involve the activation of 2-adrenoceptorsthe 2-adrenoceptor antagonists may be useful in the treatment of diarrhoeal diseases. A single pass lumen perfusion technique was used to investigate possible sympathetic tone over colonic fluid and electrolyte absorption in the rat colon in vivo. The technique employed appeared to lack the necessary resolution for this study and alternative approaches are discussed