974 resultados para European call option
Resumo:
The point at which the parties to a negotiation for the sale of land are legally bound can often be difficult to judge. This is particularly so where the parties have agreed a lawyer is to formalise the agreement between them. When the parties have not agreed all matters relating to the transaction, interesting questions arise as to what terms regulate the relationship. In Moffatt Property Development Group Pty Ltd v Hebron Park Pty Ltd [2009] QCA 60 the Queensland Court of Appeal considered first, whether there was a binding agreement to sell and secondly, how the relationship would be regulated in the absence of express agreement in relation to many of the terms.
Resumo:
Esta dissertação aplica a regularização por entropia máxima no problema inverso de apreçamento de opções, sugerido pelo trabalho de Neri e Schneider em 2012. Eles observaram que a densidade de probabilidade que resolve este problema, no caso de dados provenientes de opções de compra e opções digitais, pode ser descrito como exponenciais nos diferentes intervalos da semireta positiva. Estes intervalos são limitados pelos preços de exercício. O critério de entropia máxima é uma ferramenta poderosa para regularizar este problema mal posto. A família de exponencial do conjunto solução, é calculado usando o algoritmo de Newton-Raphson, com limites específicos para as opções digitais. Estes limites são resultados do princípio de ausência de arbitragem. A metodologia foi usada em dados do índice de ação da Bolsa de Valores de São Paulo com seus preços de opções de compra em diferentes preços de exercício. A análise paramétrica da entropia em função do preços de opções digitais sínteticas (construídas a partir de limites respeitando a ausência de arbitragem) mostraram valores onde as digitais maximizaram a entropia. O exemplo de extração de dados do IBOVESPA de 24 de janeiro de 2013, mostrou um desvio do princípio de ausência de arbitragem para as opções de compra in the money. Este princípio é uma condição necessária para aplicar a regularização por entropia máxima a fim de obter a densidade e os preços. Nossos resultados mostraram que, uma vez preenchida a condição de convexidade na ausência de arbitragem, é possível ter uma forma de smile na curva de volatilidade, com preços calculados a partir da densidade exponencial do modelo. Isto coloca o modelo consistente com os dados do mercado. Do ponto de vista computacional, esta dissertação permitiu de implementar, um modelo de apreçamento que utiliza o princípio de entropia máxima. Três algoritmos clássicos foram usados: primeiramente a bisseção padrão, e depois uma combinação de metodo de bisseção com Newton-Raphson para achar a volatilidade implícita proveniente dos dados de mercado. Depois, o metodo de Newton-Raphson unidimensional para o cálculo dos coeficientes das densidades exponenciais: este é objetivo do estudo. Enfim, o algoritmo de Simpson foi usado para o calculo integral das distribuições cumulativas bem como os preços do modelo obtido através da esperança matemática.
Resumo:
Exam and solutions in LaTex
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
Esta tesis está dividida en dos partes: en la primera parte se presentan y estudian los procesos telegráficos, los procesos de Poisson con compensador telegráfico y los procesos telegráficos con saltos. El estudio presentado en esta primera parte incluye el cálculo de las distribuciones de cada proceso, las medias y varianzas, así como las funciones generadoras de momentos entre otras propiedades. Utilizando estas propiedades en la segunda parte se estudian los modelos de valoración de opciones basados en procesos telegráficos con saltos. En esta parte se da una descripción de cómo calcular las medidas neutrales al riesgo, se encuentra la condición de no arbitraje en este tipo de modelos y por último se calcula el precio de las opciones Europeas de compra y venta.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62P05.
Resumo:
Justice Mullins of the Queensland Supreme Court recently considered the status of a put option contained in a registered lease in circumstances where there was an assignment of the reversion. The matter arose for determination in Denham Bros Ltd v W Freestone Leasing Pty Ltd [2002] QSC 307. The decision is of interest as a lease containing a put option, exercisable by a landlord, is perhaps less commonly encountered than a lease containing a call option, exercisable by a tenant.
Resumo:
Frictions are factors that hinder trading of securities in financial markets. Typical frictions include limited market depth, transaction costs, lack of infinite divisibility of securities, and taxes. Conventional models used in mathematical finance often gloss over these issues, which affect almost all financial markets, by arguing that the impact of frictions is negligible and, consequently, the frictionless models are valid approximations. This dissertation consists of three research papers, which are related to the study of the validity of such approximations in two distinct modeling problems. Models of price dynamics that are based on diffusion processes, i.e., continuous strong Markov processes, are widely used in the frictionless scenario. The first paper establishes that diffusion models can indeed be understood as approximations of price dynamics in markets with frictions. This is achieved by introducing an agent-based model of a financial market where finitely many agents trade a financial security, the price of which evolves according to price impacts generated by trades. It is shown that, if the number of agents is large, then under certain assumptions the price process of security, which is a pure-jump process, can be approximated by a one-dimensional diffusion process. In a slightly extended model, in which agents may exhibit herd behavior, the approximating diffusion model turns out to be a stochastic volatility model. Finally, it is shown that when agents' tendency to herd is strong, logarithmic returns in the approximating stochastic volatility model are heavy-tailed. The remaining papers are related to no-arbitrage criteria and superhedging in continuous-time option pricing models under small-transaction-cost asymptotics. Guasoni, Rásonyi, and Schachermayer have recently shown that, in such a setting, any financial security admits no arbitrage opportunities and there exist no feasible superhedging strategies for European call and put options written on it, as long as its price process is continuous and has the so-called conditional full support (CFS) property. Motivated by this result, CFS is established for certain stochastic integrals and a subclass of Brownian semistationary processes in the two papers. As a consequence, a wide range of possibly non-Markovian local and stochastic volatility models have the CFS property.
Resumo:
Exercises and solutions in LaTex
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
This article expresses the price of a spread option as the sum of the prices of two compound options. One compound option is to exchange vanilla call options on the two underlying assets and the other is to exchange the corresponding put options. This way we derive a new closed form approximation for the price of a European spread option and a corresponding approximation for each of its price, volatility and correlation hedge ratios. Our approach has many advantages over existing analytical approximations, which have limited validity and an indeterminacy that renders them of little practical use. The compound exchange option approximation for European spread options is then extended to American spread options on assets that pay dividends or incur costs. Simulations quantify the accuracy of our approach; we also present an empirical application to the American crack spread options that are traded on NYMEX. For illustration, we compare our results with those obtained using the approximation attributed to Kirk (1996, Correlation in energy markets. In: V. Kaminski (Ed.), Managing Energy Price Risk, pp. 71–78 (London: Risk Publications)), which is commonly used by traders.