982 resultados para Equação de estado
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
Neste trabalho investigamos soluções solitônicas em modelos de Kaluza-Klein com um número arbitrário de espaços internos toroidais, que descrevem o campo gravitacional de um objeto massivo compacto. Cada toro di-dimensional possui um fator de escala independente Ci, i = 1, ..., N, que é caracterizado pelo parâmetro ᵞi. Destacamos a solução fisicamente interessante correspondente à massa puntual. Para a solução geral obtemos equações de estado nos espaços externo e interno. Estas equações demonstram que a massa pontual solitônica possui equações de estado tipo poeira em todos os espaços. Obtemos também os parâmetros pósnewtonianos que nos possibilitam encontrar as fórmulas da precessão do periélio, do desvio da luz e do atraso no tempo de ecos de radar. Além disso, os experimentos gravitacionais levam a uma forte limitação nos parâmetros do modelo: T = ƩNi=1 diYi = −(2, 1±2, 3)×10−5. A solução para massa pontual com Y1 = . . . = YN = (1+ƩNi=1 di)−1 contradiz esta restrição. A imposição T = 0 satisfaz essa limitação experimental e define uma nova classe de soluções que são indistinguíveis para a relatividade geral. Chamamos estas soluções de sólitons latentes. Cordas negras e membranas negras com Yi = 0 pertencem a esta classe. Além disso, a condição de estabilidade dos espaços internos destaca cordas/membranas negras de sólitons latentes, conduzindo exclusivamente para as equações de estado de corda/membrana negra pi = −ε/2, i = 1, . . . ,N, nos espaços internos e ao número de dimensões externas d0 = 3. As investigações do fluido perfeito multidimensional estático e esfericamente simétrico com equação de estado tipo poeira no espaço externo confirmam os resultados acima.
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
Uma dedução dos critérios de multicriticalidade para o cálculo de pontos críticos de qualquer ordem representa a formalização de ideias utilizadas para calcular pontos críticos e tricríticos e ainda amplia tais ideias. De posse desta dedução pode-se compreender os critérios de tricriticalidade e, com isso, através de uma abordagem via problema de otimização global pode-se fazer o cálculo de pontos tricríticos utilizando um método numérico adequado de otimização global. Para evitar um excesso de custo computacional com rotinas numéricas utilizou-se aproximações na forma de diferenças finitas dos termos que compõem a função objetivo. Para simular a relação P v - T optou-se pela equação de estado cúbica de Peng-Robinson e pela regra clássica de fluidos de van der Vaals, para modelagem do problema também se calculou os tensores de ordem 2, 3, 4 e 5 da função do teste de estabilidade. Os resultados obtidos foram comparados com dados experimentais e por resultados obtidos com outros autores que utilizaram métodos numéricos, equação de estado ou abordagem diferente das utilizadas neste trabalho.
Resumo:
A descoberta de petróleo na camada de Pré-Sal possibilita a geração de ganhos em relação à dependência energética do país, mas também grandes desafios econômicos e tecnológicos. Os custos de extração são maiores devido a vários fatores como a exigência de equipamentos de exploração que suportem elevadas pressões, altas temperaturas e grandes concentrações de gases ácidos, tais quais, dióxido de carbono (CO2) e sulfeto de hidrogênio (H2S). Uma das principais preocupações com o CO2 é evitar liberá-lo para a atmosfera durante a produção. Com a modelagem termodinâmica de dados de equilíbrio de sistemas envolvendo CO2 supercrítico e hidrocarbonetos é possível projetar equipamentos utilizados em processos de separação. A principal motivação do trabalho é o levantamento de dados de equilíbrio de fases de sistemas compostos de CO2 e hidrocarbonetos, possibilitando assim prever o comportamento dessas misturas. Os objetivos específicos são a avaliação do procedimento experimental, a estimação e predição dos parâmetros de interação binários para assim prever o comportamento de fases dos sistemas ternários envolvendo CO2 e hidrocarbonetos. Duas metodologias foram utilizadas para obtenção dos dados de equilíbrio: método estático sintético (visual) e método dinâmico analítico (recirculação das fases). Os sistemas avaliados foram: CO2 + n-hexano, CO2 + tetralina, CO2 + n-hexadecano, CO2 + n-hexano + tetralina e CO2 + tetralina + n-hexadecano à alta pressão; tetralina + n-hexadecano à baixa pressão. Para o tratamento dos dados foi utilizada equação de estado cúbica de Peng-Robinson e a regra de mistura clássica
Resumo:
As estrelas de nêutrons nascem com altas temperaturas (~ 1011 K) e durante alguns segundos sofrem um rápido resfriamento por emissão de neutrinos. O processo Urca direto é o principal mecanismo para explicar essa perda de energia. O problema do resfriamento das estrelas de nêutrons é um problema de grande interesse porque seu entendimento pode fornecer informações importantes sobre a constituição do interior da estrela. Na literatura existente até o momento, a emissividade de neutrinos é calculada considerando os núcleons como partículas não relativísticas quando considerados todos os níveis de Landau das partículas carregadas. Por outro lado, a emissividade de neutrinos para núcleons relativísticos é calculada considerando somente o primeiro nível de Landau (para campo magnético forte). Para campos magnéticos fracos, onde mais de um nível de Landau é ocupado, é usada a emissividade correspondente à do campo nulo. Neste trabalho aplicamos a teoria de Weinberg-Salan para interações fracas no cálculo da emissividade de neutrinos com e sem campo magnético presente, num cálculo totalmente relativístico para os núcleons e considerando todos os níveis de Landau. Esta é a contribuição original do trabalho. Para descrever a matéria a altas densidades, utilizamos uma teoria relativística de campo médio a temperatura zero que inclui apenas o octeto bariônico e os léptons mais leves. São apresentados os resultados para a emissividade de neutrinos, onde é evidente a ocupação dos diferentes níveis de Landau como função do campo magnético.
Resumo:
Este trabalho objetiva a construção de estruturas robustas e computacionalmente eficientes para a solução do problema de deposição de parafinas do ponto de vista do equilíbrio sólido-líquido. São avaliados diversos modelos termodinâmicos para a fase líquida: equação de estado de Peng-Robinson e os modelos de coeficiente de atividade de Solução Ideal, Wilson, UNIQUAC e UNIFAC. A fase sólida é caracterizada pelo modelo Multisólido. A previsão de formação de fase sólida é inicialmente prevista por um teste de estabilidade termodinâmica. Posteriormente, o sistema de equações não lineares que caracteriza o equilíbrio termodinâmico e as equações de balanço material é resolvido por três abordagens numéricas: método de Newton multivariável, método de Broyden e método Newton-Armijo. Diversos experimentos numéricos foram conduzidos de modo a avaliar os tempos de computação e a robustez frente a diversos cenários de estimativas iniciais dos métodos numéricos para os diferentes modelos e diferentes misturas. Os resultados indicam para a possibilidade de construção de arcabouços computacionais eficientes e robustos, que podem ser empregados acoplados a simuladores de escoamento em dutos, por exemplo.
Resumo:
Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.
Resumo:
Tese de doutoramento, Química (Química Tecnológica), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
O processo Spheripol é, atualmente, um dos mais utilizados na produção industrial de polipropileno e seus copolímeros. É composto por dois reatores tipo loop em série e, em alguns casos, um ou dois reatores tipo fase gás também em série. Neste trabalho é apresentado um modelo para os reatores loop do processo Spheripol. Os reatores loop são modelados como CSTR não ideais. O esquema cinético implementado é relativamente amplo, sendo capaz de englobar copolimerizações multisítio. Uma análise qualitativa do modelo é feita utilizando parâmetros cinéticos presentes na literatura e uma análise quantitativa do modelo é feita com base em dados reais de planta industrial. Ainda com base em dados de planta é feita uma estimação de parâmetros e a validação do modelo. Finalmente, o modelo com parâmetros estimados é aplicado num estudo de caso no qual também é criado um modelo de equilíbrio termodinâmico para a mistura reacional baseado na lei de Henry e na equação de estado de Peng-Robinson.
Resumo:
Este trabalho tem como objetivo o estudo da matéria nuclear a altas densidades considerando-se as fases hadrônica e de quarks à temperatura nula e finita, com vistas a aplicações no estudo de propriedades estáticas globais de estrelas compactas. Parte dos cálculos apresentados nesta dissertação foram realizados por diferentes autores. Entretanto, em geral, estes trabalhos limitaram-se ao estudo da matéria nuclear em regiões de densidades e temperaturas específicas. Este estudo visa, por sua vez, o desenvolvimento de um tratamento amplo e consistente para estes sistemas, considerando-se diferentes regimes de densidade e temperatura para ambas as fases, hadrônica e de quarks. Buscamos com isso adquirir conhecimento suficiente que possibilite, não somente a ampliação do escopo dos modelos considerados, como também o desenvolvimento, no futuro, de um modelo mais apropriado à descrição de propriedades estáticas e dinâmicas de estrelas compactas. Ainda assim, este trabalho apresenta novos aspectos e resultados inéditos referentes ao estudo da matéria nuclear, como descrevemos a seguir. No estudo da matéria nuclear na fase hadrônica, consideramos os modelos da teoria quântica de campos nucleares desenvolvidos por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, e conhecidos, respectivamente, como Hadrodinâmica Quântica, ZM e Não-Linear. Nestes modelos a matéria nuclear é descrita a partir de uma formulação lagrangeana com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear Neste estudo consideramos inicialmente a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como por exemplo, a massa efetiva do núcleon na matéria nuclear simétrica e de nêutrons. A equação de estado da matéria de nêutrons possibilita a descrição de propriedades estáticas globais de estrelas compactas, como sua massa e raio, através da sua incorporação nas equações de Tolman, Oppenheimer e Volkoff (TOV). Os resultados obtidos nestes cálculos estão em plena concordância com os resultados apresentados por outros autores. Consideramos posteriormente o estudo da matéria nuclear com graus de liberdade de bárions e mésons à temperatura finita, com particular atenção na região de transição de fase. Para este estudo, incorporamos aos modelos considerados, o formalismo da mecânica estatística à temperatura finita. Os resultados obtidos, para as propriedades da matéria nuclear à temperatura finita, concordam também com os resultados obtidos por outros autores. Um aspecto inédito apresentado neste trabalho refere-se à incorporação de valores para os pontos críticos da transição de fase, ainda não determinados por outros autores. O comportamento do calor específico também é analisado de forma inédita nesta dissertação no tratamento utilizado com os modelos Não-Linear e ZM. Utilizamos a equação de estado da matéria de nêutrons à temperatura finita nas equações TOV, determinando propriedades globais de uma estrela protoneutrônica Observamos neste trabalho que ocorre um aumento da massa máxima da estrela com o aumento da temperatura, comportamento este já previsto por outros autores em diferentes modelos. Posteriormente incorporamos ao formalismo à temperatura finita, o equilíbrio químico, a presença de graus de liberdade leptônicos para elétrons e múons e a neutralidade de carga. Apresentamos nesta etapa do trabalho, uma forma alternativa para a incorporação destes ingredientes, baseada na determinação de uma fração relativa entre os potenciais químicos de prótons e nêutrons, à temperatura nula, extendendo este resultado à temperatura finita. Este procedimento permite a determinação da distribuição de núcleons e léptons no interior de uma estrela protoneutrônica, onde incluímos ainda a presença de neutrinos confinados. No estudo da matéria de quarks, consideramos o modelo de sacola do Massachussets Institute of Technology (MIT). Incorporando as equações TOV neste estudo, determinamos propriedades globais de estrelas de quarks, bem como a distribuição dos diferentes sabores de quarks no interior estelar. Como principal resultado, obtivemos uma equação de estado geral para a matéria hadrônica e de quarks, introduzida nas equações TOV, e analisamos a existência de estrelas híbridas. Os resultados obtidos nesta etapa do trabalho são totalmente coerentes com aqueles obtidos por outros autores.