402 resultados para Enterobacter A47
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.
Resumo:
This study was the first conducted in Brazil to evaluate the presence of Enterobacter sakazakii in milk-based powdered infant formula manufactured for infants 0 to 6 months of age and to examine the conditions of formula preparation and service in three hospitals in Sao Paulo State, Brazil. Samples of dried and rehydrated infant formula, environments of milk kitchens, water, bottles and nipples, utensils, and hands of personnel were analyzed, and E. sakazakii and Enterobacteriaceae populations were determined. All samples of powdered infant formula purchased at retail contained E. sakazakii at <0.03 most probable number (MPN)/100 g. In hospital samples, E. sakazakii was found in one unopened formula can (0.3 MPN/100 g) and in the residue from one nursing bottle from hospital A. All other cans of formula from the same lot bought at a retail store contained E. sakazakii at <0.03 MPN/100 g. The pathogen also was found in one cleaning sponge from hospital B. Enterobacteriaceae populations ranged from 10(1) to 10(5) CFU/g in cleaning aids and <5 CFU/g in all formula types (dry or rehydrated), except for the sample that contained E. sakazakii, which also was contaminated with Enterobacteriaceae at 5 CFU/g. E. sakazakii isolates were not genetically related. In an experiment in which rehydrated formula was used as the growth medium, the temperature was that of the neonatal intensive care unit (25 C), and the incubation time was the average time that formula is left at room temperature while feeding the babies (up to 4 h), a 2-log increase in levels of E. sakazakii was found in the formula. Visual inspection of the facilities revealed that the hygienic conditions in the milk kitchens needed improvement. The length of time that formula is left at room temperature in the different hospitals while the babies in the neonatal intensive care unit are being fed (up to 4 h) may allow for the multiplication of E. sakazakii and thus may lead to an increased health risk for infants.
Resumo:
A total of 73 isolates (57 Enterobacter cloacae and 16 Enterobacter agglomerans), recovered during an outbreak of bacteremia in the Campinas area, São Paulo, Brazil, were studied. Of these isolates, 61 were from parenteral nutrition solutions, 9 from blood cultures, 2 from a sealed bottle of parenteral nutrition solution, and one was of unknown origin. Of the 57 E. cloacae isolates, 54 were biotype 26, two were biotype 66 and one was non-typable. Of 39 E. cloacae isolates submitted to ribotyping, 87.2% showed the same banding pattern after cleavage with EcoRI and BamHI. No important differences were observed in the antimicrobial susceptibility patterns among E. cloacae isolates exhibiting the same biotype, serotype and ribotype. All E. agglomerans isolates, irrespective of their origin, showed same patterns when cleaved with EcoRI and BamHI. The results of this investigation suggest an intrinsic contamination of parenteral nutrition solutions and incriminate these products as a vehicle of infection in this outbreak.
Resumo:
Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes(7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of blaVIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacaeshowed blaTEM-1, but only one showed blaCTX-M-15 gene, while no blaSHV was detected.
Resumo:
INTRODUCTION: Enterobacter can be included in the group of extended spectrum β-lactamases (EBSL)-producing bacteria, though few studies exist evaluating risk factors associated with this microorganism. A retrospective cohort study was conducted to determine risk factors associated with ESBL-producing-Enterobacter and mortality METHODS: A retrospective cohort study with 58 bacteremia caused by ESBL-producing-Enterobacter (28 cases) and non-ESBL (30 cases) RESULTS: Risk factors associated with ESBL-Enterobacter were trauma, length of hospitalization, admission to the intensive care unit, urinary catheter and elective surgery (p< 0.05). The survival curves were similar for ESBL and non-ESBL CONCLUSIONS: ESBL-producing-Enterobacter bacteremia is prevalent and the survival curve was similar to non-ESBL-producing strains.
Resumo:
INTRODUCTION: The aim of this study was to identify a rapid and simple phenotypic method for extended-spectrum β-lactamase (ESBL) detection in Enterobacter cloacae. METHODS: A total of 79 consecutive, non-repeated samples of E. cloacae were evaluated. Four phenotypic methods were applied for ESBL detection, results were compared to multiplex polymerase chain reaction (PCR) as the gold standard reference method: 1) ceftazidime and cefotaxime disks with and without clavulanate, both with boronic acid added; 2) disk approximation using cefepime and amoxicillin/clavulanate; 3) ESBL screening by minimum inhibitory concentration (MIC) ≥ 16µg/mL and 4) by MIC ≥ 2µg/mL for cefepime. RESULTS: Method 4 showed the best combination of sensitivity (100%) and specificity (94%). CONCLUSIONS: MIC ≥ 2µg/mL for cefepime would be very useful for the phenotypic detection of ESBL in samples of E. cloacae.
Resumo:
Analysis of zymograms with SDS-polyacrilamide gel electrophoresis containing gelatin as substrate, and performed on samples of haemolymph or fat body taken from Rhodnius prolixus inoculated or not with Enterobacter cloacae, demonstrated distinct patterns of protease activities: (i) in the haemolymph two proteases were induced in insects inoculated with bacteria; (ii) two proteases were detected in the fat bodies derived from non-inoculated controls or insect inoculated with sterile culture medium; (iii) haemolymph and fat body had both the same apparent molecular weights proteases (46 and 56 kDa); and (iv) these enzymes were characterized as metallo-proteases. The association of these enzymes in Rhodnius infected with bacteria was discussed.
Resumo:
In order to evaluate the resolving power of several typing methods to identify relatedness among Brazilian strains of Enterobacter cloacae, we selected twenty isolates from different patients on three wards of a University Hospital (Orthopedics, Nephrology, and Hematology). Traditional phenotyping methods applied to isolates included biotyping, antibiotic sensitivity, phage-typing, and O-serotyping. Plasmid profile analysis, ribotyping, and macrorestriction analysis by pulsed-field gel electrophoresis (PFGE) were used as genotyping methods. Sero- and phage-typing were not useful since the majority of isolates could not be subtyped by these methods. Biotyping, antibiogram and plasmid profile permitted us to classify the samples into different groups depending on the method used, and consequently were not reliable. Ribotyping and PFGE were significantly correlated with the clinical epidemiological analysis. PFGE did not type strains containing nonspecific DNase. Ribotyping was the most discriminative method for typing Brazilian isolates of E. cloacae.
Resumo:
[Tesis] ( Maestría en Ciencias con Especialidad en Microbiología Industrial) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias con Orientación en Microbiología Industrial) UANL, 2010.
Resumo:
Enterobacter sakazakii is an uncommon bacterium that is known to cause severe neonatal infection and is rare among adults. We present a peculiar case of E. sakazakii bacteraemia with multiple splenic abscesses in a 75-year-old institutionalised woman, who was successfully treated with 6 weeks of imipenem and percutaneous drainage of the abscesses.
Resumo:
Enterobacter spp. are considered important causing agents of infection, specially in hospitalized individuals. The natural resistance of these microorganisms and the great facility to develop resistance to new antimicrobial agents make this genus an important object of study. In this work, 176 strains isolated from various clinical samples were used from hospitalized patients (University Hospital Domingos Leonardo Cerávolo) and from clinic patients (Clinical Laboratory from Unoeste), both situated in Presidente Prudente - SP. E. cloacae (78.9%), E. aerogenes (7.9%) and E. (pantoea) agglomerans (3.9%) were the ones more frequently isolated. Eleven antimicrobial agents were tested by the disk diffusion method and around 90% of the strains presented resistance to the cephalotin, ampicillin and cefaclor. Strains of E. (pantoea) agglomerans presented wide profile of sensibility However one strain of E. cloacae presented resistance to all the antimicrobial agents. The antimicrobial agents with greater inhibitory activity were imipenem and cefepime, for this reason these antimicrobial agents could be the treatment of choice in emergencial therapeutic. This emergencial therapy can be applied with relative security, whereas the data obtained in this study show homogeneity in the profile of sensibility to these antimicrobial agents, independent of the infection site and from the isolated species. The ESBL enzyme could not be detected in no one of the strains by the double diffusion test.