918 resultados para Eigenfunctions and fundamental solution
Resumo:
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
Resumo:
In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
The use of 3-D fundamental solution is some axisymmetric problems is straightforward. The resulting algorithms seem to work better than the usual ones (at least for static solutions) and for dynamic cases, than those presented in the previous paragraph. The robustness of the method allows the computations for very high and very low frequencies without any noticeable difficulty.
Resumo:
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.
Resumo:
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.
Resumo:
Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.
Resumo:
The conformational properties of foldamers generated from alpha gamma hybrid peptide sequences have been probed in the model sequence Boc-Aib-Gpn-Aib-Gpn-NHMe. The choice of alpha-aminoisobutyryl (Aib) and gabapentin (Gpn) residues greatly restricts sterically accessible coil formational space. This model sequence was anticipated to be a short segment of the alpha gamma C-12 helix, stabilized by three successive 4 -> 1 hydrogen bonds, corresponding to a backbone-expanded analogue of the alpha polypeptide 3(10)-helix. Unexpectedly, three distinct crystalline polymorphs were characterized in the solid state by X-ray diffraction. In one form, two successive C-12 hydrogen bonds were obtained at the N-terminus, while a novel C-17 hydrogen-bonded gamma alpha gamma turn was observed at the C-terminus. In the other two polymorphs, isolated C-9 and C-7 hydrogen-bonded turns were observed at Gpn (2) and Gpn (4). Isolated C-12 and C-9 turns were also crystallographically established in the peptides Boc-Aib-Gpn-Aib-OMe and Boc-Gpn-Aib-NHMe, respectively. Selective line broadening of NH resonances and the observation of medium range NH(i)<-> NH(i+2) NOEs established the presence of conformational heterogeneity for the tetrapeptide in CDCl3 solution. The NMR results are consistent with the limited population of the continuous C-12 helix conformation. Lengthening of the (alpha gamma)(n) sequences in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Xxx (Xxx = Aib, Leu) resulted in the observation of all of the sequential NOEs characteristic of an alpha gamma C-12 helix. These results establish that conformational fragility is manifested in short hybrid alpha gamma sequences despite the choice of conformationally constrained residues, while stable helices are formed on chain extension.