T-Q relation and exact solution for the XYZ chain with general non-diagonal boundary terms
Contribuinte(s) |
G Altarelli W Bartel |
---|---|
Data(s) |
01/01/2006
|
Resumo |
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Elsevier Science Bv |
Palavras-Chave | #Spin Chain #Reflection Equation #Bethe Ansatz #Q-operator #Fusion Hierarchy #Physics, Particles & Fields #Xxz Spin-chain #Conformal Field-theory #Bethe-ansatz Solution #Functional Relations #Integrable Structure #Lattice Statistics #Baxter Equation #8-vertex Model #C1 #230199 Mathematics not elsewhere classified #780101 Mathematical sciences #0105 Mathematical Physics |
Tipo |
Journal Article |