13 resultados para EAMs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio elliciency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on chip-scale optical gates based on the integration of evanescent waveguide unitraveling-carrier photodiodes (EC-UTC-PDs) and intra-step quantum well electroabsorption modulators (IQW-EAMs) on n-InP substrates. These devices exhibit simultaneously 2.1 GHz and -16.2 dB RF-gain at 21 GHz with a 450 Omega thin-film resistor and a bypass capacitor integrated on a chip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedding a double barrier resonant tunnelling diode (RTD) in a unipolar InGaAlAs optical waveguide gives rise to a very low driving voltage electroabsorption modulator (EAM) at optical wavelengths around 1550 nm. The presence of the RTD within the waveguide core introduces high non- linearity and negative di erential resistance in the current±voltage (I±V) characteristic of the waveguide. This makes the electric ®eld distribution across the waveguide core strongly dependent on the bias voltage: when the current decreases from the peak to the valley, there is an increase of the electric ®eld across the depleted core. The electric ®eld enhancement in the core-depleted layer causes the Franz±Keldysh absorption band-edge to red shift, which is responsible for the electroabsorption e ect. High-frequency ac signals as low as 100mV can induce electric ®eld high-speed switching, producing substantial light modulation (up to 15 dB) at photon energies slightly lower than the waveguide core band-gap energy. The key di erence between this device and conventional p-i-n EAMs is that the tunnelling characteristics of the RTD are employed to switch the electric ®eld across the core-depleted region; the RTD- EAM has in essence an integrated electronic ampli®er and, therefore, requires considerably less switching power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A notificação espontânea por profissionais da saúde é o principal método de avaliação do risco/benefício da utilização de medicamentos, pois permite a análise da frequência, gravidade e expectativa dos eventos adversos a medicamentos (EAMs). No entanto, a principal limitação deste método é a subnotificação dos casos, causando grandes impactos na saúde pública, tais como gastos desnecessários para as instituições e diminuição da segurança do paciente. A fim de identificar técnicas de intervenção educativa efetivas no incentivo à notificação espontânea por profissionais da saúde nos diferentes níveis de atenção, realizou-se revisão sistemática nas bases de dados PUBMED, PAHO, LILACS e EMBASE no período de novembro de 2011 a janeiro de 2012, com posterior atualização em março de 2013, por meio da utilização de descritores científicos em farmacovigilância, buscando-se identificar estudos originais que avaliaram o impacto da intervenção educativa desenvolvida. Pela estratégia elaborada, foram identificados 101 artigos, dos quais 16 contemplaram os critérios de inclusão. A maioria dos estudos inclusos foram conduzidos na Europa (14), e a maioria das intervenções foi destinada ao nível terciário de atenção à saúde (11) e principalmente aos médicos (12). As técnicas efetivas de intervenção educativa identificadas foram multifacetadas, resultando no aumento do número absoluto, porcentagem ou taxa de notificação espontânea, além de melhorar a qualidade dos relatos de reações adversas a medicamentos (RAM): graves, inesperadas, relacionadas a medicamentos novos e com alta causalidade. Ademais, faz-se necessária educação permanente dos profissionais para maior adesão à farmacovigilância e contribuição para o gerenciamento de riscos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse a pour sujet le développement d’un détecteur à fibre scintillante plastique pour la dosimétrie des faisceaux de photons de basses énergies. L’objectif principal du projet consiste à concevoir et caractériser cet instrument en vue de mesurer la dose de radiation reçue au cours des examens d’imagerie diagnostique et interventionnelle. La première section est consacrée à la conception de six différents systèmes et à l’évaluation de leur performance lorsqu’ils sont exposés à des rayonnements de hautes et basses énergies. Tous les systèmes évalués présentaient un écart type relatif (RSD) de moins de 5 % lorsqu’ils étaient exposés à des débits de dose de plus de 3 mGy/s. Cette approche systématique a permis de déterminer que le tube photomultiplicateur répondait le mieux aux conditions d’exposition propres à la radiologie. Ce dernier présentait une RSD de moins de 1 % lorsque le débit de dose était inférieur à 0.10 mGy/s. L’étude des résultats permis également de suggérer quelques recommandations dans le choix d’un système en fonction de l’application recherchée. La seconde partie concerne l’application de ce détecteur à la radiologie interventionnelle en procédant à des mesures de dose à la surface d’un fantôme anthropomorphique. Ainsi, plusieurs situations cliniques ont été reproduites afin d’observer la précision et la fiabilité du détecteur. Ce dernier conserva une RSD inférieure à 2 % lorsque le débit de dose était supérieur à 3 mGy/min et d’environ 10 % au débit le plus faible (0.25 mGy/min). Les mesures sur fantôme montrèrent une différence de moins de 4 % entre les mesures du détecteur et celles d’une chambre d’ionisation lors du déplacement de la table ou du bras de l’appareil de fluoroscopie. Par ailleurs, cette différence est demeurée sous les 2 % lors des mesures de débit de dose en profondeur. Le dernier sujet de cette thèse porta sur les fondements physiques de la scintillation dans les scintillateurs plastiques. Les différents facteurs influençant l’émission lumineuse ont été analysés afin d’identifier leur contribution respective. Ainsi, la réponse du détecteur augmente de près d’un facteur 4 entre un faisceau de 20 kVp et 250 kVp. De ce signal, la contribution de la fluorescence produite dans la fibre claire était inférieure à 0.5 % lorsque les fibres étaient exposées sur 10 cm par des faisceaux de 20 à 250 kVp. Le phénomène d’extinction de la fluorescence par ionisation a également été étudié. Ainsi, l’atténuation du signal variait en fonction de l’énergie du faisceau et atteignit environ 20 % pour un faisceau de 20 kVp. En conclusion, cette étude suggère que les détecteurs à fibres scintillantes peuvent mesurer avec précision la dose de radiation reçue en imagerie diagnostique et interventionnelle, mais une calibration rigoureuse s’avère essentielle.