978 resultados para Double Period


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we investigated the magnonic and photonic structures that exhibit the so-called deterministic disorder. Speci cally, we studied the effects of the quasiperiodicity, associated with an internal structural symmetry, called mirror symmetry, on the spectra of photonics and magnonics multilayer. The quasiperiodicity is introduced when stacked layers following the so-called substitutional sequences. The three sequences used here were the Fibonacci sequence, Thue-Morse and double-period, all with mirror symmetry. Aiming to study the propagation of light waves in multilayer photonic, and spin waves propagation in multilayer magnonic, we use a theoretical model based on transfer matrix treatment. For the propagation of light waves, we present numerical results that show that the quasiperiodicity associated with a mirror symmetry greatly increases the intensity of transmission and the transmission spectra exhibit a pro le self-similar. The return map plotted for this system show that the presence of internal symmetry does not alter the pattern of Fibonacci maps when compared with the case without symmetry. But when comparing the maps of Thue-Morse and double-time sequences with their case without the symmetry mirror, is evident the change in the pro le of the maps. For magnetic multilayers, we work with two di erent systems, multilayer composed of a metamagnetic material and a non-magnetic material, and multilayers composed of two cubic Heisenberg ferromagnets. In the rst case, our calculations are carried out in the magnetostatic regime and calculate the dispersion relation of spin waves for the metamgnetic material considered FeBr2. We show the e ect of mirror symmetry in the spectra of spin waves, and made the analysis of the location of bulk bands and the scaling laws between the full width of the bands allowed and the number of layers of unit cell. Finally, we calculate the transmission spectra of spin waves in quasiperiodic multilayers consisting of Heisenberg ferromagnets. The transmission spectra exhibit self-similar patterns, with regions of scaling well-de ned in frequency and the return maps indicates only dependence of the particular sequence used in the construction of the multilayer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene-Eocene Thermal Maximum (PETM; ~55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event - that we term the Dan-C2 event - is characterized by a conspicuous double negative excursion in delta13C and delta18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETMin the early Paleocene at ~65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~40 ky and are separated by a short plateau that brings the combined duration to ~100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO eventmay reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The addition of lime into soils has been widely used to stabilize the expansive sub-grade soils when the road pavements are constructed on them. It is common practice to apply a half of the required lime amount and allow a certain time period for lime to react with soils (Amelioration period) before applying the rest of lime and compacting the sub-grade. The optimum amelioration period is essential to minimize the construction delay and to gain the higher strength. In this study, two different expansive soils procured from two different locations in the state of Queensland in Australia were first mixed with different lime contents. A soil mixed with a particular lime content was compacted at different amelioration periods (e.g.: 0, 6, 12, 18, 24 hrs) to obtain soil samples to measure the Unconfined Compressive Strength (UCS). The results suggested that for a given amelioration period, UCS increased with the increase in lime content. The optimum amelioration period could be within 14~17 hours for most of the lime contents in tested soils. This could suggest that the current 24-48 hour amelioration period specified by the Queensland Department of Transport and Main roads could be reduced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The use of endosseous dental implants has become common practice for the rehabilitation of edentulous patients, and a two-implant overdenture has been recommended as the standard of care. The use of small-diameter implants may extend treatment options and reduce the necessity for bone augmentation. However, the mechanical strength of titanium is limited, so titanium alloys with greater tensile and fatigue strength may be preferable. Purpose: This randomized, controlled, double-blind, multicenter study investigated in a split-mouth model whether small-diameter implants made from Titanium-13Zirconium alloy (TiZr, Roxolid™) perform at least as well as Titanium Grade IV implants. Methods and Materials: Patients with an edentulous mandible received one TiZr and one Ti Grade IV small-diameter bone level implant (3.3 mm, SLActive®) in the interforaminal region. The site distribution was randomized and double-blinded. Outcome measures included change in radiological peri-implant bone level from surgery to 12 months post-insertion (primary), implant survival, success, soft tissue conditions, and safety (secondary). Results: Of 91 treated patients, 87 were available for the 12-month follow-up. Peri-implant bone level change (-0.3 ± 0.5 mm vs -0.3 ± 0.6 mm), plaque, and sulcus bleeding indices were not significantly different between TiZr and Ti Grade IV implants. Implant survival rates were 98.9 percent and 97.8 percent, success rates were 96.6 percent and 94.4 percent, respectively. Nineteen minor and no serious adverse events were related to the study devices. Conclusion: This study confirms that TiZr small-diameter bone level implants provide at least the same outcomes after 12 months as Ti Grade IV bone level implants. The improved mechanical properties of TiZr implants may extend implant therapy to more challenging clinical situations.