964 resultados para Double Michael Reaction
Resumo:
Induction of phase 2 enzymes and elevations of glutathione are major and sufficient strategies for protecting mammals and their cells against the toxic and carcinogenic effects of electrophiles and reactive forms of oxygen. Inducers belong to nine chemical classes and have few common properties except for their ability to modify sulfhydryl groups by oxidation, reduction, or alkylation. Much evidence suggests that the cellular “sensor” molecule that recognizes the inducers and signals the enhanced transcription of phase 2 genes does so by virtue of unique and highly reactive sulfhydryl functions that recognize and covalently react with the inducers. Benzylidene-alkanones and -cycloalkanones are Michael reaction acceptors whose inducer potency is profoundly increased by the presence of ortho- (but not other) hydroxyl substituent(s) on the aromatic ring(s). This enhancement correlates with more rapid reactivity of the ortho-hydroxylated derivatives with model sulfhydryl compounds. Proton NMR spectroscopy provides no evidence for increased electrophilicity of the β-vinyl carbons (the presumed site of nucleophilic attack) on the hydroxylated inducers. Surprisingly, these ortho-hydroxyl groups display a propensity for extensive intermolecular hydrogen bond formation, which may raise the reactivity and facilitate addition of mercaptans, thereby raising inducer potencies.
Resumo:
[GRAPHICS] Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver(I)-promoted intramolecular Friedel-Crafts arylation of a functional group-specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative.
Resumo:
Certain 3-azabicyclo[3.3.1] nonane derivatives undergo unprecedented stereospecific skeletal cleavage when subjected to light affording a novel heterotricyclic skeleton.
Resumo:
Specific 3-azabicyclo[3.3.1]nonane derivatives undergo skeletal cleavage when subjected to light or Lewis acidic conditions affording novel heteratricycles, which is in stark contrast to 3-oxabicyclo[3.3.1]nonanes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The palladium-catalyzed cross-coupling reaction of 3,4-bis(tributylstannyl)furan-2(5H)-one using chelating ligand or polar solvent gives mixtures of single and double coupled products, even when one equivalent of halide coupling partner is used. After optimization, the double coupling reaction was shown to be general, with the use of two equivalents of aryl iodides giving 3,4-disubstituted furanones, The reaction using benzyl bromides proceeds at lower temperatures than the corresponding coupling using aryl iodides, giving dibenzylfuranones. The methodology has been exemplified in a synthesis of (+/-)-hinokinin.
Resumo:
The stereoselective construction of complex molecules with multiple stereogenicity in a single step represents an extremely useful, but challenging approach to complexity in chemical synthesis. The development of organocatalytic cascade processes has proven useful in these studies, but reports where four or more stereocentres are created in a single step from just two achiral reagents are rare. Herein we report the development of a novel asymmetric domino Michael-Michael reaction between nitrohex-4-enoates and nitro-olefins to generate cyclohexanes of high complexity, including one with a quaternary centre, and one with five contiguous stereocentres. This methodology provides access to a range of useful nitrocyclohexane derivatives, including a novel class of a-lycorane-like structures.
Resumo:
Ziel dieser Arbeit war es, ausgehend von auxiliargebundenen Piperidinderivaten, unterschiedliche chirale bi- und tricyclische Verbindungen darzustellen. Dazu wurde das 2,3,4,6-Tetra-O-pivaloyl--D-galactosylamin durch Kondensation mit Aldehyden in die entsprechenden Galactosylaldimine überführt, die in einer Lewissäure-katalysierten hochdiastereoselektiven Tandem-Mannich-Michael-Reaktionssequenz mit Danishefsky-Dien zu 2-substituierten Dehydropiperidinonen umgesetzt wurden. Die auf diese Weise zugänglichen chiralen Heterocyclen wurden diastereoselektiv in trans-konfigurierte 5-Bromverbindungen überführt. In einer Thiazolsynthese nach Hantzsch konnten die -Bromketone mit ambidenten Nukleophilen, wie Thiobenzamiden und unsymmetrischen Thioharnstoffderivaten, in niedrigen Ausbeuten zu bicyclischen Tetrahydro-thiazolo[5,4-c]pyridinen umgesetzt werden. Weitere bicyclische Heterocyclen mit einem Tetrahydro-thieno[2,3-c]pyridin-System konnten durch eine Gewald-Cyclisierung an 2-substituierten N-Galactosyl-piperidinonen erhalten werden. Durch Palladium-katalysierte Kreuzkupplungen an heterocyclischen Enoltriflaten, die ausgehend von den N-Galactosyl-dehydropiperidinonen synthetisiert wurden, gelang die Einführung von Aryl-, Alkinyl- und Alkenylsubstituenten in 4-Position des Piperidinringes. Zur Freisetzung der 2,4-disubstituierten Dehydropiperidinen wurde die N-glycosidische Bindung im sauren Milieu gespalten. Verbindungen mit einer exocyclischen Doppelbindung wurden einer Diels-Alder-Reaktion mit N-Phenylmaleinimid zum Aufbau von Isochinolinderivaten eingesetzt. Des Weiteren gelang die Synthese von 2-benzylsubstituierten N-Galactosyl-dehydropiperidinonen, wobei ortho-halogensubstituierte Phenylacetaldehyde eingesetzt wurden. Die in hohen Diastereomerenüberschüssen gebildeten Dehydropiperidinone wurden in die entsprechenden Enoltriflate überführt und einer Domino-Suzuki-Heck-Reaktion unterworfen. In dieser Kaskadenreaktion konnten tricyclische diastereomerenreine Benzomorphanderivate synthetisiert werden.
Resumo:
The atom efficient phospha-Michael reaction between bis 4-methylphenyl phosphine oxide and several activated internal alkenes has been shown to occur under microwave irradiation without added solvent or catalyst. The alkenes used for this study were ethyl 4-nitrocinnamate, two chalcones ((E)-3-(4-methoxy-phenyl)-1-(4- nitrophenyl)-prop-2-en-1-one and (E)-1-(4-methoxyphenyl)-3-(3-nitro-phenyl)-prop-2- en-1-one), and 2-phenylmethylene-propanedinitrile. In the case of ethyl 4-nitrocinnamate, reaction with bis 4-methylphenyl phosphine oxide for sixty minutes at 130 °C yielded the desired phospha-Michael product in a 55% yield after purification. Varying the location of the nitro group on the phenyl rings of the chalcones did not seem to have a large effect on their reactivity. By NMR, both chalcones seemed to react to the same extent when the reaction times and temperatures were held constant. Interestingly, a phospha-Michael reaction was observed at a reaction temperature of 65°C for experiments involving 2- phenyl-methylene-propanedinitrile while the other substrates required a reaction temperature of 130 °C. Similar experiments were carried out with bis mesityl phosphine oxide and two internal alkenes: 2-phenylmethylene-propanedinitrile and ethyl-2-cyano-3- methyl-2-butenoate. These experiments did not yield any of the predicted phospha- Michael products, which suggest steric limitations to the Michael donor for this reaction.
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioorgânica
Resumo:
Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.
Resumo:
A double side-reaction, consisting in the formation of Fmoc--Ala-OH and Fmoc--Ala-AA-OH, during the preparation of Fmoc protected amino acids (Fmoc-AA-OH) with Fmoc-OSu is discussed. Furthermore, the new Fmoc-2-MBT reagent is proposed for avoiding these side-reactions as well as the formation of the Fmoc-dipeptides (Fmoc-AA-AA-OH) and even tripeptides, which is another important side-reaction when chloroformates such as Fmoc-Cl is used for the protection of the -amino function of the amino acids.
Resumo:
A stereocontrolled total synthesis of methyl (+/-)-O-methyl podocarpate (4) has been successfully accomplished using the trans-fused diester 21 as a key intermediate. Intramolecular Michael reaction of the enone-diester 18 afforded the cis-fused keto-diester 19 in high yield which was stereoselectively converted into 21 via the enone 20. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
HL and MeL are prepared by condensing benzil dihydrazone with 2-formylpyridine and 2-acetylpyridine, respectively, in 1:2 molar proportions. While in a reaction with [Ru-(C6H6)Cl-2](2), HL yields the cation [Ru(C6H6){5,6-diphenyl-3-(pyridin-2-yl)- 1,2,4-triazine}Cl](+), MeL gives the cation [Ru(C6H6)(MeL)Cl](+). Both the cations are isolated as their hexafluorophosphate salts and characterised by X-ray crystallography. In the case of HL, double domino electrocyclic/elimination reactions are found to occur. The electrocyclic reaction occurs in a C=N-N=C-C=N fragment of HL and the elimination reaction involves breaking of a C-H bond of HL. Density functional calculations on model complexes indicate that the identified electrocyclic reaction is thermochemically as well as kinetically feasible for both HL and MeL in the gas phase. For a double domino reaction, similar to that operative in HL, to occur for MeL, breaking of a C-C bond would be required in the elimination step. Our model calculations show the energy barrier for this elimination step to be much higher (329.1 kJ mol(-1)) for MeL than that for HL (96.3 kJ mol(-1)). Thus, the domino reaction takes place for HL and not for MeL. This accounts for the observed stability of [Ru(C6H6)-(MeL)Cl](+) under the reaction conditions employed.
Resumo:
This paper investigates the structure of the pro; ducts obtained from the polymerization of aniline with ammonium persulfate in a citrate/phosphate buffer solution at pH 3 by resonance Raman, NMR, FTIR, and UV-vis-NIR spectroscopies. All the spectroscopic data showed that the major product presented segments that were formed by a 1,4-Michael reaction between aniline and p-benzoquinone monoimine, ruling out the formation of polyazane structure that has been recently proposed. The characterization of samples obtained at different stages of the reaction indicated that, as the reaction progressed, phenazine units were formed and 1,4-Michael-type adducts were hydrolyzed/oxidized to yield benzoquinone. Raman mapping data suggested that phenazine-like segments could be related to the formation of the microspheres morphology.
Resumo:
Alkaloide, im allgemeinen Stickstoffheterocyclen, sind wichtige Vorläuferverbindungen von pharmakologisch aktiven Substanzen. Die stereoselektive Synthese von Stickstoffheterocyclen ist von großem Interesse für die Entdeckung und Entwicklung von Arzneistoffen.In der Arbeit wurden Glycosylamine vom Typ des 2,3,4,6-Tetra-O-pivaloyl-?-D-galactosylamins bzw. des 2,3,4-Tri-O-pivaloyl-?-D-arabinosylamins zur diastereoselektiven Synthese mehrfach substituierter Stickstoffheterocyclen eingesetzt. In einer Tandem-Mannich-Michael-Reaktion eines Glycosylimins mit dem Danishefsky-Dien wurden die in Position 6 substituierten Dehydropiperidinone aufgebaut. In einer mehrstufigen Synthesesequenz konnte das 4a-Epimere des natürlichen Pumiliotoxin C als Hydrochlorid dargestellt werden.Mittels der Tandem-Mannich-Michael-Reaktion wurden auch 6,6`-disubstituierte Dehydropiperidinone dargestellt. Die Darstellung zweier Aza-spiro-Verbindungen gelang erstmals ausgehend von den Ketonen Cyclohexanon und 3-Methyl-cyclohexanon über die Glycosylketimine. Das in dieser Reaktion gefundene Nebenprodukt N-Glycosyl-6-(2´-oxo-propyl)-2,3 dehydropiperidin-4-on diente als Ausgangssubstanz für die Pinidinolsynthese.In der angewendeten Weise eignen sich Glycosylamine sehr gut für die stereoselektive Synthese von Stickstoffheterocyclen. Meistens werden die chirale Piperidinalkaloidvorläufer in hohen Ausbeuten und Diastereoselektivitäten erhalten.