1000 resultados para Distribution transformers
Resumo:
In this work a detailed modeling of three-phase distribution transformers aimed at complementing well-known approaches is presented. Thus, incidence of angular displacement and tapping is taken into account in the proposed models, considering both actual values and per unit. The analysis is based on minimal data requirement: solely short-circuit admittance is needed since three-phase transformers are treated as non-magnetically-coupled single-phase transformers. In order to support the proposed methodology, results obtained through laboratory tests are presented.
Resumo:
This paper reports potential benefits around dynamic thermal rating prediction of primary transformers within Western Power Distribution (WPD) managed Project FALCON (Flexible Approaches to Low Carbon Optimised Networks). Details of the thermal modelling, parameter optimisation and results validation are presented with asset and environmental data (measured and day/week-ahead forecast) which are used for determining dynamic ampacity. Detailed analysis of ratings and benefits and confidence in ability to accurately predict dynamic ratings are presented. Investigating the effect of sustained ONAN rating compared to a dynamic rating shows that there is scope to increase sustained ratings under ONAN operating conditions by up to 10% higher between December and March with a high degree of confidence. However, under high ambient temperature conditions this dynamic rating may also reduce in the summer months.
Resumo:
This paper describes the application of two relatively new diagnostic techniques for the determination of insulation condition in aged transformers. The techniques are (a) measurements of interfacial polarization spectra by a DC method and (b) measurements of molecular weight and its distribution by gel permeation chromatography. Several other electrical properties of the cellulose polymer were also investigated. Samples were obtained from a retired power transformer and they were analysed by the developed techniques. Six distribution transformers were also tested with the interfacial polarization spectra measurement technique, and the molecular weight of paper/pressboard samples from these transformers were also measured by the gel permeation chromatography. The variation of the results through different locations in a power transformer is discussed in this paper. The possible correlation between different measured properties was investigated and discussed in this paper.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.
Resumo:
A crescente necessidade de reduzir a dependência energética e a emissão de gases de efeito de estufa levou à adoção de uma série de políticas a nível europeu com vista a aumentar a eficiência energética e nível de controlo de equipamentos, reduzir o consumo e aumentar a percentagem de energia produzida a partir de fontes renováveis. Estas medidas levaram ao desenvolvimento de duas situações críticas para o setor elétrico: a substituição das cargas lineares tradicionais, pouco eficientes, por cargas não-lineares mais eficientes e o aparecimento da produção distribuída de energia a partir de fontes renováveis. Embora apresentem vantagens bem documentadas, ambas as situações podem afetar negativamente a qualidade de energia elétrica na rede de distribuição, principalmente na rede de baixa tensão onde é feita a ligação com a maior parte dos clientes e onde se encontram as cargas não-lineares e a ligação às fontes de energia descentralizadas. Isto significa que a monitorização da qualidade de energia tem, atualmente, uma importância acrescida devido aos custos relacionados com perdas inerentes à falta de qualidade de energia elétrica na rede e à necessidade de verificar que determinados parâmetros relacionados com a qualidade de energia elétrica se encontram dentro dos limites previstos nas normas e nos contratos com clientes de forma a evitar disputas ou reclamações. Neste sentido, a rede de distribuição tem vindo a sofrer alterações a nível das subestações e dos postos de transformação que visam aumentar a visibilidade da qualidade de energia na rede em tempo real. No entanto, estas medidas só permitem monitorizar a qualidade de energia até aos postos de transformação de média para baixa tensão, não revelando o estado real da qualidade de energia nos pontos de entrega ao cliente. A monitorização nestes pontos é feita periodicamente e não em tempo real, ficando aquém do necessário para assegurar a deteção correta de problemas de qualidade de energia no lado do consumidor. De facto, a metodologia de monitorização utilizada atualmente envolve o envio de técnicos ao local onde surgiu uma reclamação ou a um ponto de medição previsto para instalar um analisador de energia que permanece na instalação durante um determinado período de tempo. Este tipo de monitorização à posteriori impossibilita desde logo a deteção do problema de qualidade de energia que levou à reclamação, caso não se trate de um problema contínuo. Na melhor situação, o aparelho poderá detetar uma réplica do evento, mas a larga percentagem anomalias ficam fora deste processo por serem extemporâneas. De facto, para detetar o evento que deu origem ao problema é necessário monitorizar permanentemente a qualidade de energia. No entanto este método de monitorização implica a instalação permanente de equipamentos e não é viável do ponto de vista das empresas de distribuição de energia já que os equipamentos têm custos demasiado elevados e implicam a necessidade de espaços maiores nos pontos de entrega para conter os equipamentos e o contador elétrico. Uma alternativa possível que pode tornar viável a monitorização permanente da qualidade de energia consiste na introdução de uma funcionalidade de monitorização nos contadores de energia de determinados pontos da rede de distribuição. Os contadores são obrigatórios em todas as instalações ligadas à rede, para efeitos de faturação. Tradicionalmente estes contadores são eletromecânicos e recentemente começaram a ser substituídos por contadores inteligentes (smart meters), de natureza eletrónica, que para além de fazer a contagem de energia permitem a recolha de informação sobre outros parâmetros e aplicação de uma serie de funcionalidades pelo operador de rede de distribuição devido às suas capacidades de comunicação. A reutilização deste equipamento com finalidade de analisar a qualidade da energia junto dos pontos de entrega surge assim como uma forma privilegiada dado que se trata essencialmente de explorar algumas das suas características adicionais. Este trabalho tem como objetivo analisar a possibilidade descrita de monitorizar a qualidade de energia elétrica de forma permanente no ponto de entrega ao cliente através da utilização do contador elétrico do mesmo e elaborar um conjunto de requisitos para o contador tendo em conta a normalização aplicável, as características dos equipamentos utilizados atualmente pelo operador de rede e as necessidades do sistema elétrico relativamente à monitorização de qualidade de energia.
Resumo:
Diplomityössä määritellään sähkönjakeluverkon suunnitteluperusteet. Suunnitteluperusteet antavat ohjeet verkostosuunnittelijoille siitä, miten sähköverkko suunnitellaan sähköteknisesti oikein, taloudelliset näkökohdat huomioiden. Työn alussa määritellään kaikkiin suunnittelutehtäviin vaikuttavat sähkötekniset ja taloudelliset laskentaparametrit. Oikeiden parametrien käyttäminen on ehdottoman tärkeää totuudenmukaisten lopputulosten saavuttamiseksi. Eniten lopputuloksiin vaikuttaville laskentaparametreille suoritetaan työn loppuosassa herkkyysanalyysi, jotta tulevaisuuden mahdollisesti erilaiset olosuhteet voitaisiin huomioida. Varsinaisissa suunnitteluun liittyvissä osioissa käsitellään keski- ja pienjänniteverkkojen suunnittelunlisäksi jakelumuuntajan mitoittaminen, sekä määritellään rajat erilaisille verkoston rakenteille. Erityisesti elinkaarikustannusajattelua painotetaan suunnittelutehtävissä ottamalla huomioon komponenttien koko pitoaikana syntyvät kustannukset.
Resumo:
Tämän diplomityön tarkoitus on tuoda esiin öljy- ja hartsieristeisten muuntajien käytön tekniset, ympäristölliset ja taloudelliset erot. Vertailuun on otettu nämä kaksi vaihtoehtoa, koska ne ovat yleisimmin Suomessa käytetyt. Suurin osa jakelumuuntajista Suomessa on öljyeristeisiä, siksi tämän työn esimerkeiksi on otettu projektit, joissa käytettiin hartsimuuntajaa. Työn alkuosa koostuu muuntajien teknisten erojen selvittämisestä sekä ulko- että sisäkäytössä. Toinen osa käsittelee ympäristönkuormitusta ja kolmas osa sitä, kuinka jakelumuuntajan käyttö ja valinta vaikuttaa muuntamon elinikäkustannuksiin. Lopussa on kaksi todellista esimerkkiä, joissa voi olla mahdollisuus kyseenalaistaa muuntajavaihtoehto tai olla vaikeaa valita kannattavin ratkaisu. Suurimmat valintakriteerit muuntajalle Suomessa ovat taloudellisuus ja ympäristöystävällisyys. Ympäristöystävällisyys voi olla paikallista tai globaalia ympäristöhaitan torjuntaa. Myös kustannukset voidaan jakaa suoriin ja epäsuoriin muuntajasidonnaisiin kustannuksiin. Esimerkin kuvauksen jälkeen on laskettu yleisimpien vaihtoehtojen kustannukset ja esitetty niille perustelut.
Resumo:
Tässä työssä tutkitaan 1000 V pienjännitejakelun taloudellista kannattavuutta. Tutkimus perustuu teoreettiseen tarkasteluun, jossa noudatetaan yleisiä verkostosuunnittelun periaatteita. EU-lainsäädäntö mahdollistaa 1000 V pienjänniteportaan sijoittamisen nykyisen keskijänniteverkon ja pienjänniteverkon väliin lisäten kolmannen jakelujänniteportaan nykyään käytettävien 20 kV ja 0,4 kV väliin. Jakeluverkkojen kehittämiseksi on etsittävä ratkaisu, joka on taloudellinen sekä asiakkaiden että verkonhaltijoiden kannalta. Tällaiset ratkaisut pienentävät verkon käytön kokonaiskustannuksia ja parantavat sähkön laatua. Lisättäessä jakeluverkkoon kolmas jänniteporras, keskijänniteverkon johtopituus lyhenee ja varsinkin lyhyiden haarajohtojen määrä vähenee. Tämä vähentää keskijänniteverkossa esiintyvien keskeytysten määrää ja pienentää keskeytyskustannuksia. Kilovoltin järjestelmä on kannattava korvattaessa sillä osa keskijänniteverkkoa, tai estettäessä perinteisellä järjestelmällä tarvittava muuntopiirin jakaminen. Osana varsinaista pienjänniteverkkoa ei kilovoltinjärjestelmä ole kannattava. Tässä työssä kolmijänniteportaista jakeluverkkoa tutkitaan teoreettisilla verkkosuunnitelmilla, joita tehdään muutamille perusverkkotopologioille. Taloudellista kannattavuutta tutkitaan vertaamalla perinteistä kaksijänniteportaista ja kolmijänniteportaista verkkoratkaisua kustannusten suhteen teknisten reunaehtojen puitteissa. 1000 V pienjännitejakelu vaatii uudenlaisia verkostokomponentteja. Näistä on erityisesti käsitelty 1/0,4 kV pienjännitemuuntajaa. Muuntajasuunnittelun lähtökohtana on 1000 V verkon käyttäminen keskijänniteverkon jatkeena maasta erotettuna verkkona.
Resumo:
Tässä työssä on tarkasteltu sähkönjakeluverkon primäärikomponenttien elinkaaria niiden energiankulutuksen näkökulmasta. Työssä kerrotaan elinkaarianalyysin käyttämisestä tutkimusmenetelmänä erityisesti sähkönjakeluverkkojen tarkastelussa. Tarkasteltaviksi komponenteiksi on valittu 110 kV/20 kV sähköasemalta päämuuntajat ja keskijännitepuolen kojeistot, keskijännitejohtolähdön maakaapeli ja ilmajohtorakenteet sekä jake-lumuuntajat, pienjännitemaakaapelit ja -avojohdot. Työssä esitetään yksinkertainen menetelmä komponenttien elinkaarien aikana kuluvan energiamäärän ja siitä aiheutuvien CO2-päästöjen arviointiin. Lisäksi esitetään tuloksia tehdyistä esimerkkitarkasteluista ja analyysin lähtötietojen määrittämisestä. Työn tarkoitus on auttaa verkkoyhtiöitä arvioimaan komponentti-investointien kannattavuutta energiatehokkuuden näkökulmasta. Energiahäviöt ovat usein verkkoyhtiön suurin asiakas ja päästökaupan myötä myös CO2-päästöillä on hintansa. Energiatehokkaiden ratkaisujen käyttäminen on tullut entistä tärkeämmäksi komponentteja uusittaessa.
Resumo:
Yhteiskunnan riippuvuus sähköstä on lisääntynyt voimakkaasti viime vuosikymmenien aikana. Sähkönjakelussa esiintyneet lyhyet ja pitkät keskeytykset ovat osoittaneet yhteiskunnan haavoittuvuuden ja yhteiskunta kestää entistä vähemmän sähkönjakelussa tapahtuvia häiriöitä. Keskeytyksistä aiheutuneiden haittojen arvostus on kasvanut ja tämä on luonut taloudelliset perusteet sähkön laatua parantaville investoinneille. Haja-asutusalueiden keskijänniteverkon johdot on rakennettu avojohtoina ja siten ne ovat alttiita sääolosuhteista johtuville myrsky- ja lumikuormavaurioille. Ilmastomuutoksen ennustetaan lisäävän tuulisuutta ja siten ongelmat sähkönjakelussa mahdollisesti lisääntyvät. Taajamissa käytetään enemmän kaapeleita ja johtolähdöt ovat lyhyitä, joten myrskyistä aiheutuvia keskeytyksiä on vähemmän kuin haja-asutusalueella. Olemassa olevat jakeluverkot ovat käytössä vielä vuosikymmeniä, joten uuden tekniikan kehittämisen rinnalla on kehitettävä myös olemassa olevaa jakeluverkkoa ja sen ylläpitoa. Ylläpidon tavoitteena on käyttövarmuuden parantamisen lisäksi huolehtia siitä, että jakeluverkkoihin sitoutunut omaisuus säilyttää arvonsa mahdollisimman hyvin pitoajan loppuun saakka. Jakeluverkkoihin investoitiin paljon 1950–70-luvuilla. Tältä ajalta on yhä käytössä puupylväitä, joiden ikääntymisen takia korvausinvestointien tarve kasvaa. Hyvänä puolena tässä on että käyttövarmuuden parantamiseksi olemassa olevaa jakeluverkkoa ei tarvitse uusia ennenaikaisesti. Tutkimuksessa päähuomio on haja-asutusalueiden 20 kV keskijänniteverkon kehittämisessä, sillä yli 90 % asiakkaiden kokemista keskeytyksistä johtuu keskijänniteverkon vioista. Erityisesti johtorakenteisiin ja johtojen sijoittamiseen on kiinnitettävä huomiota. Käyttövarmuuden lisäksi jakeluverkkojen kehittämistä ohjaavia tekijöitä ovat taloudellisuus, ympäristön huomioiminen, viranomaisvalvonta sekä asiakkaiden ja omistajien odotukset. Haja-asutusalueilla taloudelliset haasteet ovat suuret vakituisen väestön vähenemisen ja mahdollisesti sähköntarpeen pienenemisen takia. Taloudellisuus korostuu ja riskit kasvavat, kun tuottojen määrä supistuu tarvittaviin jakeluverkon investointeihin ja ylläpitokustannuksiin verrattuna. Ristiriitaa aiheuttaa se, että asiakkaat odottavat sähkönjakelulta parempaa luotettavuutta, mutta paremmasta sähkönlaadusta ei olla valmiita maksamaan juurikaan nykyistä enempää. Jakeluverkkojen kehittämistä voi hidastaa myös viranomaisvalvonta, jos tuottoja ei voida lisätä investointien lisätarpeiden suhteessa. Tutkimuksessa on analysoitu yleisellä tasolla kaapeloinnin lisäämistä, korkeiden pylväiden käyttämistä, leveitä johtokatuja, edullisten ja yksinkertaisten sähköasemien rakentamista haja-asutusalueille ja automaatioasemien lisäämistä keskijänniteverkon solmupisteisiin. Erityisesti tutkimuksessa on analysoitu uutena tekniikkana 1000 V jännitteen käyttömahdollisuutta jakeluverkkojen kehittämisessä. Sähköjohtojen siirtäminen teiden varsiin parantaa käyttövarmuutta, vaikka johdot rakennetaan samalla tekniikalla kuin olemassa olevat johdot. Hajaasutusalueille rakennettavilla sähköasemilla pitkät syöttöjohdot voidaan jakaa pienemmiksi syöttöalueiksi, jolloin keskeytyksistä aiheutuvat haitat koskettavat kerrallaan pienempää asiakasmäärää. Samaan tulokseen päästään oikein sijoitetuilla ja toteutetuilla automaatioasemilla. Tutkimuksen mukaan lupaavaksi tekniikaksi jakeluverkkojen kehittämisessä on osoittautumassa 1000 V jänniteportaan ottaminen 400 V pienjännitteen lisäksi. 1000 V verkoilla voidaan korvata häiriöherkkiä 20 kV keskijänniteverkon lyhyitä, alle viiden kilometrin pituisia haarajohtoja ja haarajohtojen jatkeita, missä siirrettävät tehot ovat pieniä. Uudessa jakelujärjestelmässä sähkö tuodaan 1000 V jännitteellä lähelle asiakasta, jossa jännite muunnetaan normaaliksi asiakkaille soveltuvaksi 400/230 V jännitteeksi. Edullisuus perustuu siihen, että rakentamisessa käytetään samoja pienjännitejohtoja kuin asiakkaille menevässä 400 V pienjänniteverkossa. 1000 V jakelutekniikassa sekä investointikustannukset että ylläpitokustannukset ovat pienemmät kuin perinteisessä 20 kV ilmajohtotekniikassa. 1000 V johdot säästävät maisemaa, sillä ne eivät tarvitse leveää johtokatua kuten 20 kV keskijännitejohdot. 1000 V verkkojen käyttö soveltuukin erityisesti vapaa-ajanasuntojen sähköistykseen herkissä ranta- ja järvimaisemissa. 1000 V verkot mahdollistavat kaapeliauraamisen lisäämisen ja näin voidaan vähentää ympäristöä haittaavien kyllästettyjen pylväiden käyttöä. 1000 V jakeluverkkojen osalta tutkimustyön tuloksia on sovellettu suomalaisessa Suur-Savon Sähkö Oy:ssä. Käytännön kokemuksia 1000 V jakelujärjestelmästä on useista kymmenistä kohteista. Tutkimustulokset osoittavat, ettei keskijänniteverkon maakaapelointi hajaasutusalueilla ole taloudellisesti kannattavaa nykyisillä keskeytyksistä aiheutuvilla haitta-arvoilla, mutta jos keskeytyskustannusten arvostus kasvaa, tulee kaapelointi kannattavaksi monissa paikoissa. Myös myrskyisyyden ja myrskyistä aiheutuvien jakelukeskeytysten lisääntyminen tekisi kaapeloinnista kannattavan. Tulevaisuudessa jakeluverkkojen rakentaminen on entistä monimuotoisempi tehtävä, jossa taloudellisuuden ja käyttövarmuuden lisäksi on huomioitava asiakkaat, omistajat, viranomaiset ja ympäristö. Tutkimusta jakelutekniikan kehittämiseksi tarvitaan edelleen. Tulevaisuuden osalta haja-asutusalueiden jakeluverkkojen kehittämiseen liittyy paljon epävarmuuksia. Hajautetun kiinteistökohtaisen sähköntuotannon lisääntyminen voi tehdä jakeluverkoista nykyistä tarpeettomampia, mutta esimerkiksi liikenteen sähköistyminen voi kasvattaa jakeluverkkojen merkitystä. Tästä syystä jakeluverkkojen rakentamisessa tarvitaan joustavuutta, jotta tarvittaessa voidaan helposti sopeutua erilaisiin kehityssuuntiin.
Resumo:
Suomessa sähkönjakeluverkon pääasialliset jännitetasot ovat 20 kV ja 400 V. 20 kV jännitetasolla sähkö viedään lähelle kuluttajia ja muunnetaan pienemmäksi lähellä asiakkaita. Haittapuolena on se, että 20 kV avojohtosähkönsiirtoverkko on hyvin vika-altis ja usein yhden haaran vikaantuessa monta muutakin jää ilman sähköä. Lisäksi hintavien ja suurien jakelumuuntajien määrä on suuri. Vaihtoehtona on toteuttaa osa sähkönjakelusta tasajännitteellä, jolloin tehollinen pienjännite olisi 400 V:a suurempi. Tällöin sähköä voitaisiin siirtää pidempiä matkoja ilman, että asiakaskohtaisia tai muutaman asiakkaan kattavia 20 kV siirtolinjoja tarvitsisi käyttää. Tämä edellyttää vaihtosuuntauksen toteuttamista kuluttajan päässä. Tässä työssä esiteltävällä 1 kVA:n tehoisella vaihtosuuntaajalla muodostetaan tasasähköjakeluverkosta saatavasta 750 V tasasähköstä yksivaiheista (230 VRMS, 50 Hz) verkkojännitettä. Laite on suunniteltu toteuttamaan galvaaninen erotus mahdollisimman hyvällä hyötysuhteella. Suurtaajuusmuuntajan mitoitus mahdollisimman hyvälle hyötysuhteelle on haastava tehtävä, koska vaatimuksia sille asettavat sekä syöttävä resonanssikonvertteri että syötettävä syklokonvertteri. Mitoituksessa on pyrittävä löytämään mahdollisimman hyvä hyötysuhde kustannusten ja toteutettavuuden suhteen.
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.