886 resultados para Discrete analytic function theory
Resumo:
There is a recent trend to describe physical phenomena without the use of infinitesimals or infinites. This has been accomplished replacing differential calculus by the finite difference theory. Discrete function theory was first introduced in l94l. This theory is concerned with a study of functions defined on a discrete set of points in the complex plane. The theory was extensively developed for functions defined on a Gaussian lattice. In 1972 a very suitable lattice H: {Ci qmxO,I qnyo), X0) 0, X3) 0, O < q < l, m, n 5 Z} was found and discrete analytic function theory was developed. Very recently some work has been done in discrete monodiffric function theory for functions defined on H. The theory of pseudoanalytic functions is a generalisation of the theory of analytic functions. When the generator becomes the identity, ie., (l, i) the theory of pseudoanalytic functions reduces to the theory of analytic functions. Theugh the theory of pseudoanalytic functions plays an important role in analysis, no discrete theory is available in literature. This thesis is an attempt in that direction. A discrete pseudoanalytic theory is derived for functions defined on H.
Resumo:
Includes bibliographies.
Resumo:
This thesis is an attempt to initiate the development of a discrete geometry of the discrete plane H = {(qmxo,qnyo); m,n e Z - the set of integers}, where q s (0,1) is fixed and (xO,yO) is a fixed point in the first quadrant of the complex plane, xo,y0 ¢ 0. The discrete plane was first considered by Harman in 1972, to evolve a discrete analytic function theory for geometric difference functions. We shall mention briefly, through various sections, the principle of discretization, an outline of discrete a alytic function theory, the concept of geometry of space and also summary of work done in this thesis
Resumo:
An attempt is made by the researcher to establish a theory of discrete functions in the complex plane. Classical analysis q-basic theory, monodiffric theory, preholomorphic theory and q-analytic theory have been utilised to develop concepts like differentiation, integration and special functions.
Resumo:
The object of this thesis is to formulate a basic commutative difference operator theory for functions defined on a basic sequence, and a bibasic commutative difference operator theory for functions defined on a bibasic sequence of points, which can be applied to the solution of basic and bibasic difference equations. in this thesis a brief survey of the work done in this field in the classical case, as well as a review of the development of q~difference equations, q—analytic function theory, bibasic analytic function theory, bianalytic function theory, discrete pseudoanalytic function theory and finally a summary of results of this thesis
Resumo:
Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.
Composition operators, Aleksandrov measures and value distribution of analytic maps in the unit disc
Resumo:
A composition operator is a linear operator that precomposes any given function with another function, which is held fixed and called the symbol of the composition operator. This dissertation studies such operators and questions related to their theory in the case when the functions to be composed are analytic in the unit disc of the complex plane. Thus the subject of the dissertation lies at the intersection of analytic function theory and operator theory. The work contains three research articles. The first article is concerned with the value distribution of analytic functions. In the literature there are two different conditions which characterize when a composition operator is compact on the Hardy spaces of the unit disc. One condition is in terms of the classical Nevanlinna counting function, defined inside the disc, and the other condition involves a family of certain measures called the Aleksandrov (or Clark) measures and supported on the boundary of the disc. The article explains the connection between these two approaches from a function-theoretic point of view. It is shown that the Aleksandrov measures can be interpreted as kinds of boundary limits of the Nevanlinna counting function as one approaches the boundary from within the disc. The other two articles investigate the compactness properties of the difference of two composition operators, which is beneficial for understanding the structure of the set of all composition operators. The second article considers this question on the Hardy and related spaces of the disc, and employs Aleksandrov measures as its main tool. The results obtained generalize those existing for the case of a single composition operator. However, there are some peculiarities which do not occur in the theory of a single operator. The third article studies the compactness of the difference operator on the Bloch and Lipschitz spaces, improving and extending results given in the previous literature. Moreover, in this connection one obtains a general result which characterizes the compactness and weak compactness of the difference of two weighted composition operators on certain weighted Hardy-type spaces.
Resumo:
The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy Delta(c)=25 meV, the dark excitons appear when the radius is smaller than 25.85 A in the absence of external magnetic field. This result is more consistent with the experimental results reported by Efros [Phys. Rev. B 54, 4843 (1996)]. It is found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of external magnetic field and increase with the increase of magnetic field, in agreement with the experimental results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.
Resumo:
The density function theory was used to calculate the potential energy surface for the decomposition of CF3OF. The geometries, vibrational frequencies and energies of all stationary points were obtained. The calculated harmonic frequencies agreed well with the experimental ones. Three decomposition channels of CF3OF were studied. The calculated reaction enthalpy (29.85 kcal/mol) of the elimination reaction CF3OF --> CF2O + F-2 was in good agreement with the experimental value (27.7 kcal/mol). The O-F bond of CF3OF is broken easily by comparing the energies, while the decomposition channel to yield the CF30 and F radicals is the main reaction path. (C) 2002 Published by Elsevier Science B.V.