967 resultados para Discrete Conditional Phase-type model
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen–Cahn/Cahn–Hilliard/Navier–Stokes–Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
We investigate the mobility of nonlinear localized modes in a generalized discrete Ginzburg-Landau-type model, describing a one-dimensional waveguide array in an active Kerr medium with intrinsic, saturable gain and damping. It is shown that exponentially localized, traveling discrete dissipative breather-solitons may exist as stable attractors supported only by intrinsic properties of the medium, i.e., in the absence of any external field or symmetry-breaking perturbations. Through an interplay by the gain and damping effects, the moving soliton may overcome the Peierls-Nabarro barrier, present in the corresponding conservative system, by self-induced time-periodic oscillations of its power (norm) and energy (Hamiltonian), yielding exponential decays to zero with different rates in the forward and backward directions. In certain parameter windows, bistability appears between fast modes with small oscillations and slower, large-oscillation modes. The velocities and the oscillation periods are typically related by lattice commensurability and exhibit period-doubling bifurcations to chaotically "walking" modes under parameter variations. If the model is augmented by intersite Kerr nonlinearity, thereby reducing the Peierls-Nabarro barrier of the conservative system, the existence regime for moving solitons increases considerably, and a richer scenario appears including Hopf bifurcations to incommensurately moving solutions and phase-locking intervals. Stable moving breathers also survive in the presence of weak disorder. © 2014 American Physical Society.
Resumo:
Healthcare providers are under increased pressure to ensure that the quality
of care delivered to patients are off the highest standard. Modelling quality of
care is difficult due to the many ways of defining it. This paper introduces a potential
model which could be used to take quality of care into account when modelling
length of stay. The Coxian phase-type distribution is used to model length of stay
and quality of care incorporated into this using a Hidden Markov model. This model
is then applied to
Resumo:
We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.
Resumo:
Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.
Resumo:
In this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an “active” phase when individuals grow, reproduce and die and a second “resting” phase when individuals only grow. Transition between these two phases depends on individuals’ size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.
Resumo:
A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rectangular Hele-Shaw cell reproduce finger competition with the final evolution to a steady-state finger.
Resumo:
The development of side-branching in solidifying dendrites in a regime of large values of the Peclet number is studied by means of a phase-field model. We have compared our numerical results with experiments of the preceding paper and we obtain good qualitative agreement. The growth rate of each side branch shows a power-law behavior from the early stages of its life. From their birth, branches which finally succeed in the competition process of side-branching development have a greater growth exponent than branches which are stopped. Coarsening of branches is entirely defined by their geometrical position relative to their dominant neighbors. The winner branches escape from the diffusive field of the main dendrite and become independent dendrites.
Resumo:
We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.