48 resultados para Differentiability
Resumo:
We derive a set of differential inequalities for positive definite functions based on previous results derived for positive definite kernels by purely algebraic methods. Our main results show that the global behavior of a smooth positive definite function is, to a large extent, determined solely by the sequence of even-order derivatives at the origin: if a single one of these vanishes then the function is constant; if they are all non-zero and satisfy a natural growth condition, the function is real-analytic and consequently extends holomorphically to a maximal horizontal strip of the complex plane.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We show that the Heston volatility or equivalently the Cox-Ingersoll-Ross process is Malliavin differentiable and give an explicit expression for the derivative. This result assures the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model and the Cox-Ingersoll-Ross model for interest rates.
Resumo:
For subordinators with positive drift we extend recent results on the structure of the potential measures and the renewal densities. Applying Fourier analysis a new representation of the potential densities is derived from which we deduce asymptotic results and show how the atoms of the Lévy measure translate into points of (non)differentiability of the potential densities.
Resumo:
For strictly quasi concave differentiable utility functions, demand is shown to be differentiable almost everywhere if marginal utilities are pointwise Lipschitzian. For concave utility functions, demand is differentiable almost everywhere in the case of differentiable additively separable utility or in the case of quasi-linear utility.
Resumo:
We prove that any continuous function with domain {z ∈ C: |z| ≤ 1} that generates a bizonal positive definite kernel on the unit sphere in 'C POT.Q' , q ⩾ 3, is continuously differentiable in {z ∈ C: |z| < 1} up to order q − 2, with respect to both z and 'Z BARRA'. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z ∈ C: |z| < 1} up to the same order.
Resumo:
We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions.
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.
Resumo:
In this work we present a classification of some of the existing Penalty Methods (denominated the Exact Penalty Methods) and describe some of its limitations and estimated. With these methods we can solve problems of optimization with continuous, discrete and mixing constrains, without requiring continuity, differentiability or convexity. The boarding consists of transforming the original problem, in a sequence of problems without constrains, derivate of the initial, making possible its resolution for the methods known for this type of problems. Thus, the Penalty Methods can be used as the first step for the resolution of constrained problems for methods typically used in by unconstrained problems. The work finishes discussing a new class of Penalty Methods, for nonlinear optimization, that adjust the penalty parameter dynamically.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.
Resumo:
We present an envelope theorem for establishing first-order conditions in decision problems involving continuous and discrete choices. Our theorem accommodates general dynamic programming problems, even with unbounded marginal utilities. And, unlike classical envelope theorems that focus only on differentiating value functions, we accommodate other endogenous functions such as default probabilities and interest rates. Our main technical ingredient is how we establish the differentiability of a function at a point: we sandwich the function between two differentiable functions from above and below. Our theory is widely applicable. In unsecured credit models, neither interest rates nor continuation values are globally differentiable. Nevertheless, we establish an Euler equation involving marginal prices and values. In adjustment cost models, we show that first-order conditions apply universally, even if optimal policies are not (S,s). Finally, we incorporate indivisible choices into a classic dynamic insurance analysis.
Resumo:
We study a decentralized matching model in a large exchange economy,in which trade takes place through non--cooperative bargaining in coalitionsof finite size. Under essentially the same conditions of core equivalence, we show that the strategic equilibrium outcomes of our model coincide with theWalrasian allocations of the economy. Our method of proof exploits equivalenceresults between the core and Walrasian equilibria. Our model relaxes differentiability and convexity of preferences thereby covering the caseof indivisible goods.
Resumo:
A method for dealing with monotonicity constraints in optimal control problems is used to generalize some results in the context of monopoly theory, also extending the generalization to a large family of principal-agent programs. Our main conclusion is that many results on diverse economic topics, achieved under assumptions of continuity and piecewise differentiability in connection with the endogenous variables of the problem, still remain valid after replacing such assumptions by two minimal requirements.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Resumo:
The main topic of the thesis is optimal stopping. This is treated in two research articles. In the first article we introduce a new approach to optimal stopping of general strong Markov processes. The approach is based on the representation of excessive functions as expected suprema. We present a variety of examples, in particular, the Novikov-Shiryaev problem for Lévy processes. In the second article on optimal stopping we focus on differentiability of excessive functions of diffusions and apply these results to study the validity of the principle of smooth fit. As an example we discuss optimal stopping of sticky Brownian motion. The third research article offers a survey like discussion on Appell polynomials. The crucial role of Appell polynomials in optimal stopping of Lévy processes was noticed by Novikov and Shiryaev. They described the optimal rule in a large class of problems via these polynomials. We exploit the probabilistic approach to Appell polynomials and show that many classical results are obtained with ease in this framework. In the fourth article we derive a new relationship between the generalized Bernoulli polynomials and the generalized Euler polynomials.